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Abstract—Goals are abstractions that express agents’ intention
and allow them to organize their behavior appropriately. How can
agents develop such goals autonomously? This paper proposes
a conceptual and computational account to this longstanding
problem. We argue to consider goals as abstractions of lower-
level intention mechanisms such as rewards and values, and point
out that goals need to be considered alongside with a detection of
the own actions’ effects. Then, both goals and self-detection can
be learned from generic rewards. We show experimentally that
task-unspecific rewards induced by visual saliency lead to self
and goal representations that constitute goal-directed reaching.

Index Terms—Latent Goal Analysis, Goal Systems Develop-
ment, Self Detection, Goal Babbling, Saliency

I. INTRODUCTION

Goals are abstractions of high-dimensional world states that
express intelligent agents’ intentions underlying their actions.
Goals are considered to organize the behavior of both humans
and robots. For instance in robot planning [1] as well as motor
control [2], [3] goals describe the desired outcome of future
actions in terms of what aspect or variable in the world is
relevant and what its supposed value is. Also for robot learning
the relevance of goals as a scaffolding mechanism in high
dimensions has recently been shown [4], [5]. Yet, in all of
these scenarios the goals are carefully handcrafted: both the
variable to be controlled, as well as how the agent’s situation
designates a particular value of that variable to be the current
goal need to be specified by the designer. Several formulations
of motor learning can automatically choose internal goals
purely for the sake of training a skill (e.g. [6], [5]), but they
can neither explain how to choose goals for an actual purpose,
nor how to determine the variable that has to be controlled.

Goals are a fundamental concept also in neuroscience and
psychology. The entire formulation of the cerebellum provid-
ing internal forward and inverse models [7] only makes sense
if goals are already given as input for the inverse models. From
a conservative standpoint such models concern motor control
in the first place. Recent theories, however, go much further
and suppose that they also contribute to cortex-wide higher-
level cognitive processes [8] and are engaged in social behav-
ior [9]. Goals are also seen as a major factor in motivation
psychology [10], where “goal-setting” is considered essential
for long term behavior organization. Goals are considered a
likewise structuring element in our cognition and perception
of other agents’ behavior such as in imitation learning [11] or
teleological action understanding [12], [13].
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Fig. 1. Goals are abstraction whose achievement by means of action is
associated to some reward or desire.

Goals are useful abstractions. But where do they come
from? Neither robotics and machine learning, nor neuro-
science, nor psychology provide conclusive or even general
hints how a biological or artificial agent that starts with
no goals can acquire them. For developmental robotics the
importance of goal system development was first pointed out
by Prince et al. in [14] but is unsolved ever since. It may not
be difficult to think of heuristics for an agent to acquire goals
within isolated special scenarios, but what could be general
mechanisms for a development of goal systems? This article
seeks for answers to this longstanding question. We thereby
focus on (i) the learning of an agent’s own goals, in contrast to
observational learning about others’ goals such as in imitation
learning [15], [16] or values such as in inverse reinforcement
learning [17], and (ii) a fully autonomous learning without ex-
ternal supervision such as an agent being told what to do. Our
paper makes three contributions: Firstly, we discuss the term
“goal” conceptually in Sec. II, distinguish it from other related
concepts, and make several propositions to substantiate the
terminology. Secondly, we propose a generic computational
learning framework based on the previous considerations in
Sec. III. Based on either intrinsic or extrinsic rewards we
show how “latent” goals can be extracted from the sensory
and action information with an online algorithm. Thirdly, we
use a simple information seeking criterion based on visual
saliency as an exemplary reward in Sec. IV. We show that
this generic, task-unspecific reward is sufficient to allow our
method to extract goals and also a self-detection that cause
the emergence of goal-directed reaching for an object. We
thereby not only learn those abstractions, but already utilize
them by applying goal babbling [18] to generate actions in a
fully bootstrapping and closed action-perception-learning loop.



Fig. 2. Proposed conceptual refinement of “goals”.

II. WHAT IS A GOAL?

How can we operationalize the acquisition of goals? In
order to achieve a general conceptualization we start from dic-
tionary definitions towards usages in various scientific fields,
distinguish related terms, and make several propositions how
to substantiate the terminology. Dictionaries refer to the term
“goal” as “an aim or desired result” of someone’s “ambition
or effort”1, Goals are most precisely defined in computational
domains that use them. In motor coordination and control
[2], [3] goals are typically low-dimensional abstractions of
the to be controlled task such as a desired angular velocity
of an electric motor or a desired position of a robot’s end
effector. Thereby goals are formulated as values in some low-
dimensional space (e.g. 1d velocities, 3d effector positions)
in which they abstract from many task-irrelevant variables
(such as room temperature) of the typically much higher-
dimensional physical processes. Similarly, goals in planning
[1] describe variables of the world that should have some
desired value, while other variables are irrelevant. In both
control and planning the goal has to be achieved by means
of action, i.e. the the agent has to find and apply actions
that result in the observation or measurement of the desired
variable values. Similar aspects can also be found in goal-
setting psychology [10]: For instance in management psy-
chology it has been proposed that self-set goals should be
specific (have a particular value), measurable, and realistic
(i.e. actually achievable by means of own action) [19]. The
above points clearly distinguish goals from two other kinds of
desires or intentions: (i) Optimization or general improvement
(such as increasing reward) are not goals in a narrow sense.
“Improvement” for itself is not specific in the sense that a
particular to be achieved value is specified. Hence, there is also
no definite achievement possible or an end defined. (ii) Wishes
of desired world states (e.g. having a sunny say) are no goals
because they are not achievable by means of own action in
the first place.

With these aspects we can attempt a first definition that we
will refine in the remainder of this section:

Definition: A goal is an equivalence set of world
states that, in a certain situation, an agent desires to
achieve as a result of its own action.

1oxforddictionaries.com “goal”; corresponding definitions in other lan-
guages: duden.de (German) “Ziel”; nlpwww.nict.go.jp/wn-ja/ (Japanese)
Synset 05980875-n; queried 2014/01/15

They refer to an equivalence set of states in the sense that
there can be irrelevant variables that to not matter for the
goal. Hence, any of their values are equivalently acceptable.
The main point is that goals reflect a particular desire. Their
achievement has some value to the agent. This stands in
contrast e.g. to affordances [20]. Sahin et al. formulated
affordances as the relation between the action of an agent, an
object under manipulation, and the effect on that object [21].
Objects with similar action-effect relations can then be sum-
marized in equivalence classes such as “standonable”. Related
to this formulation, contingencies [22], [23] and action-effect
bindings [24], [25] describe general patterns of manipulability,
i.e. relations between actions and their specific effects. Goals
and affordances are both interactivist concepts in the sense
that neither goals nor affordances can be defined by only the
agent or only the environment, but only via their interplay. The
crucial difference between them is that affordances describe
any possible thing that could be done. Affordances are not
associated to any value or desire, while this desire to do
something is the constituting concern of goals in our view.

Intelligent organisms do not arbitrarily invent goals. They
must have an developmental origin. The main point of our
overall argumentation is therefore the source of information
that could lead to the autonomous development of goals.
In terms of machine learning we know three basic kinds
of learning signals: supervised input of ground-truth values,
unsupervised learning of input statistics, and reward or cost
signals in reinforcement learning or optimization. Supervised
learning as source of information seems entirely unsuited
for autonomous development of goals, since a teacher for
such information would have to be external. While social
learning of goals in such terms certainly exists, it does not
provide answers for an ontogenetic core mechanism of goal
systems development. Unsupervised learning seems likewise
unsuited since simple signal statistics can not tell about a
desire or value. Rather, reward signals seem to be the suitable
learning signal, as they express the most primitive form of a
value. Considering goals as high-level abstractions of intention
therefore suggests to consider them abstractions of world
states that are associated to reward:

Proposition 1: Goals are abstractions that do not
themselves determine a desire, but rather describe
it based on lower-level systems of desire, such as
reward or value systems.

Corresponding rewards might reflect some task very directly
when e.g. determined in a social context, or directly as food.
However, they might also be purely internal or intrinsic as it is
often considered in the contexts of intrinsic motivation [26],
[27], [28], [29] or information seeking [30]. Our exemplary
experiment in Sec. IV will take the latter perspective. The
abstraction process thereby could not only concern immediate
rewards, but also expected, future rewards that are expressed
in value systems (e.g. supposed to exist in the midbrain [31]).

The second aspect to focus on is the achievement semantics,
which leads to a crucial insight towards a computational



formalization. When goals are said to be achieved, there needs
to be a measurement of that achievement. Goals do not come
alone, but always paired with an evaluation of the own action’s
effect. In robot reaching this evaluation, or rather its learning,
is often referred to as self-detection [32], [33]: the robot’s hand
needs to be detected for instance in a camera image. A goal
and the result of the own action (self-detection) then need
to be compared in order to assess the achievement, which
holds equally also for planning domains and goal-setting
psychology. The need for this comparison forbids considering
the development of goals and self-detection separately from
each other:

Proposition 2: Goals cannot be learned or considered
independently from self-detection, but both have to
describe a consistent reference frame in which the
goal can be compared to the outcome of an action.

This aspect will largely guide our computational formalization.
Our experiments will also illustrate that this aspect poses
an important developmental hallmark: the entrance of self-
supervised action and motor learning. Once self-detection and
goals are available, a supervised learning signal becomes avail-
able to other learning processes. When self-detection (e.g. a
robot’s forward function) and goals were already available they
have been used in numerous approaches for motor learning
already [3]. With respect to the autonomous development of
goals already Prince [14] noted that goals are related to self-
supervision, but missed the point that it is not the goals
themselves, but rather the self-detection (in relation to the
goals) that enables the supervision.

Finally, we need to consider how goals become “active”,
i.e. how an agent determines which goal to follow at a
present moment. It is often considered that agents can have
multiple goals, e.g. on different timescales or also parallel
or secondary goals in the long run. This leaves a lot of
play for an operationalization, which we propose to organize
with the following restriction using the notion of cognitive or
processing “(sub-)systems” internal to an agent:

Proposition 3: One system can have only one (ac-
tive) goal at a time, which expresses the present
desire based on an internal or sensory context.

Hence, different systems of cognitive processing (e.g. such
organizing different timescales of behavior) or motor planning
and control can have one present goals each. Further we note
that a goal gets triggered by a context, such as sensory infor-
mation, an internal state or information from other processing
systems. This seems trivial but makes an important point:
there needs to be a goal-detection to determine the now to
be followed goal from the context, and that parallels the self-
detection. In the reaching example this might be a mechanism
to determine the position of the relevant object from camera
images, or also fully hard-wired position selectors in many
robot setups. In terms of motivational psychology, for instance
a certain context of a conversation might trigger a subsequent
communicational goal such as an information to be conveyed
(“by the way...”).

Fig. 3. Proposed learning formulation Latent Goal Analysis

In summary, we refer to a goal system as the joint apparatus
of goal-detection from a context and self-detection that are
compared within a common reference frame, such that the
achievement of the goal by means of own action is reflected
by a reward or value.

III. LATENT GOAL ANALYSIS

In order to mathematically operationalize goals based on the
previous conceptual considerations, we can now start with an
already formalized domain that sets almost all these concep-
tual terms in a relation: control or coordination problems [2],
[3], [4]. The remainder of this section will first show how to
set the above terms in a precise relation based on coordination
problems, which we transform into a reward-based learning
problem. We will then argue that goal- and self-detection
can be learned from rewards by computationally inverting
the previously constructed transformation. While using control
formulations as basis might seem like a treatment of a special
case only, we believe in a rather large generality of this
approach. This is supported by recent theory findings [34]
showing the universal applicability of our approach to any
reward function which suggests that it can generalize also
beyond original motor control problems.

Reward Transformation: Coordination problems such as
reaching follow a simple protocol: (1): The world provides
a goal x∗ (e.g. the target coordinate of an object) to the
agent that is situated in some observation space X⊆Rn. (2):
The agent chooses an action a (e.g. joint angles of its arm)
from some action space A⊆Rm. (3): The world provides a
causal outcome f(a) = x (e.g. the robot’s hand position) of
the agent’s action, again situated in X that serves as common
reference frame. The agent’s task is to choose an action such
that the outcome x matches the goal x∗: x=f(a)=x∗. Many
coordination problems provide redundancy: the action space
is substantially higher dimensional than the observation space
(n � m), such that multiple actions ai 6= aj map to same
outcome f(ai) = f(aj). In such scenarios an additional cost
function −ea(a) can be used to select an optimal action among
all those that fulfill f(a) = x∗. f : A → X is usually called
forward function, whereas the problem to identify it is called
self-detection [33]. Cost terms ea(a) are often used to prevent
a drift of postures or to avoid collisions [35].

This problem can be easily expressed in terms of reward by



the negative distance of goal and outcome, and ea(a):

r(x∗,a) = −||x∗ − f(a)||2 + ea(a) (1)

The goals in coordination problems are usually not available
right away. Rather, they are chosen by vision processes iden-
tifying relevant objects to be manipulated, planning, or other
processes. Hence, they are in some way determined by a larger
internal or external context. We can denote this selection on an
abstract level with a function h(c) that we call goal-detection.
For the sake of symmetry we can finally introduce a virtual
cost term ec(c) that only depends on the context. This term
does not influence the optimal action selection but reflects
that the optimal reward depends on the context which is later
on needed for universally inverting the reward-goal relation.
Altogether this gives the reward transformation

r(c,a) = −||h(c)− f(a)||2 + ec(c) + ea(a) . (2)

The overall protocol corresponds to a (continuous) one-step
reinforcement problem [36], [37]: (1): The world provides a
context c in some context space C ⊆ Rp. (2): The agent
chooses an action a from the action space A ⊆ Rm. (3): The
world provides a reward r ∈ R based on latent goals and
action outcomes as shown in equation 2.

Latent Goal Transformation: We now have a complete
formal relation between goal- and self-detection, and rewards.
Obviously, any coordination problem can be treated this way
and can be transformed into a reward-based problem. Now
suppose an agent is confronted to any reward function, spec-
ified either externally or internally. Is it possible to make
the inverse transformation from those rewards back to self-
and goal-detection? Suppose an agent perceives contexts c,
performs actions a and estimates the received rewards r(c,a)
(for estimated future rewards this would be denoted by a
value function Q(c,a)). In order to perform the inverse
transformation we need to find functions f̂ , ĥ, êc and êa to
resemble the original reward or value function r(c,a):

r(c,a) = r̂(c,a) = −||ĥ(c)− f̂(a)||2 + êc(c) + êa(a) (3)

The major task is to identify the self-detection f̂(a)= x̂∈Rn

and the goal-detection ĥ(c)= x̂∗∈Rn. These functions express
the interaction of goals and outcomes in a n-dimensional (to
be identified) observation space (see Fig. 3). Additional cost
terms depending only on context or action are considered as
remainders, and in fact are easy to find given f̂ and ĥ.

We refer to the task of identifying this transformation as La-
tent Goal Analysis (LGA), because goals (as well as outcomes)
are assumed to exist as latent variables of the reward function.
Recent theory results [34] prove the universal existence of
this transformation. It is indeed possible to transform any
reward function into the form of Eqn. 3 for a large enough
dimension n. Hence, any intrinsic or extrinsic reward can also
be expressed in terms of goals and action-outcomes, which
just have to be identified. The dimension n (like in other
dimension reduction schemes) can be used to select the few
most significant dimensions to express the reward as good as

possible. The only complication is that the transformation is
not unique [34]. Firstly, the axes of the observation space (i.e.
the outputs of ĥ and f̂ ) can be arbitrarily rotated, shifted,
and mirrored, because none of these operations changes the
distances ||ĥ(c)−f̂(a)||. This reflects that there is no “ground-
truth” orientation of internal reference frames as long the
relation to the outside world is consistent (i.e. both ĥ and f̂ are
equally turned). Secondly, it is possible to shift reward “mass”
between the terms ||ĥ− f̂ ||, êc, and êa, which does not effect
the choice of the observation space as a whole, but can change
the location of goals and outcomes relative to each other within
that space [34]. This, unfortunately very unintuitive, problem
can however be easily resolved by requiring that the term
||ĥ− f̂ || should have the most significant contribution to (i.e.
the goals should explain the largest portion of) the reward
function. This can be implemented by keeping êc and êa as
small as possible.

Learning Algorithm: In the following we introduce an
online gradient descent algorithm to estimate the above men-
tioned functions. Suppose an agent observes samples along
a time line t. The agent perceives some context ct, executes
some action at, and receives a reward rt =r(ct,at) based on
some hidden reward function r(c,a). The agent is supposed
to learn the functions ĥ, f̂ , êc, and êa such that the observed
reward rt is explained by them according to Eqn. 3. This can
be done by reducing the reward-prediction error:

Et(rt, ct,at) = ||et(rt, ct,at)||2 = ||rt − r̂(ct,at)||2 . (4)

We denote the learnable parameters of ĥ, f̂ , êc, and êa as θh,
θf , θc and θa respectively. For an initial symmetry-breaking
(due to the invariance of internal rotation and translation) it
is necessary to initialize θh and θf with small random values.
From this point on, simple gradient descent on E can succeed
to estimate the functions. However, we need to further consider
that the values of êc and êa have to be kept small. For this
purpose we use a simple decay term similar to weight-decay
often used in neural networks: In each timestep their values
are not only adapted by the error-reduction signal, but also a
decay of some ε∈ [0; 1) portion of their own value. Since any
reward mass from êc and êa that decays needs to be explained
by ||ĥ − f̂ || instead, we add (with reversed sign) the decay
values to the learning signals of ĥ and f̂ . The resulting gradient
rule with learning rates ηd and ηc can be written as:

∆θf = +ηd ·
(
et+ε· [êa(at)+êc(ct)]

)
·(x̂∗

t−x̂t)·
∂f̂(at)

∂θf

∆θh = −ηd ·
(
et+ε· [êa(at)+êc(ct)]

)
·(x̂∗

t−x̂t)·
∂ĥ(ct)

∂θh

∆θa = ηc · (et − ε · êa(at)) ·
∂êa(at)

∂θa

∆θc = ηc · (et − ε · êc(ct)) ·
∂êc(ct)

∂θc
,

in which the last term in each formula is depending on the
(and known for any) function approximation method. If the
decay term is disabled (ε= 0), these formulas correspond to



(a) Arm image, saliency, smoothed saliency (b) Beginning of learning: no coordination (c) Goal-directed reaching emerges

Fig. 4. As an example we consider a robot arm with an object in sight. Visual saliency serves as reward mechanism to learn self- and goal-detection. Goal
babbling learns from those abstractions which leads to goal-directed reaching.

ordinary gradient descent on E.
The decay term balances the contribution of all terms such

that goal- and self-detection take the dominating role in r̂.
The term −||ĥ − f̂ ||2 can, however, not model arbitrary
reward functions alone. In particular, this negative distance
can only account for numerically negative rewards. Modeling
numerically positive rewards requires the terms êc and êa to
shift the entire estimate r̂ by a constant. If the decay term is
used, however, this process can never fully reach the necessary
shift. In order to still permit a reasonable learning signal for
ĥ and f̂ , we introduce a new and purely scalar term k into
the reward estimation. This term is not effected by the decay,
but can shift the reward estimate such that −||ĥ− f̂ ||2 can be
used to model the shape of the reward function:

r̂(c,a) = −||ĥ(c)− f̂(a)||2 + êc(c) + êa(a) + k

∆k = ηc · et

Of all terms involved we will for now only use ĥ and f̂ ,
whereas êa could potentially be used to select cost-optimal
actions for the same goal. The term êc (and k) is not directly
useful, but needs to accompany the estimation when approxi-
mating any possible reward function.

IV. EXAMPLE: FROM SALIENCY TO REACHING

The conceptual discussion and mathematical operationaliza-
tion in the last to sections aimed at a general understanding of
goal system development. This section introduces a concrete
example of a generic (i.e. not task-specific) reward leading to
meaningful goal- and self-detection by means of the proposed
method. We simulate a simple robot arm with an object in
sight. We consider visual saliency as a reward to implement
information seeking behavior [30]. We show that our method
thereby develops a detection of the object as goal, and a self-
detection of the own hand. These abstractions are thereby
already utilized by means of goal babbling [4] in a closed
loop, which results in the emergence of goal-directed reaching.
Saliency measures have already been shown to permit a self-
detection of the own end-effector [38], simply because looking
at the own hand is “interesting”. Here we extend this finding by
considering an object at the same time. It turns out that more

interesting than looking at the hand or the object is to look
at both closely together (compare Fig. 4(a) top and bottom),
which exactly rewards goal-directed reaching behavior.

Setup: The basic scenario is shown in Fig. 4(a). We
consider a simple robot arm with three joints (segment length
1/3 each), such that actions are the joint angles at ∈ R3.
We refer to the effector’s actual position (that is at no time
explicitly known as such to the learner) in cartesian coordi-
nates as xt ∈ R2. A salient object is placed somewhere in
the scene at coordinates ot ∈ R2. Arm and object together
are rendered into a 48x48 pixel image. Generically we could
think of this very image as context in terms of visual per-
ception. However, considering raw 2300 dimensional visual
input for learning is neither computationally feasible nor very
biologically plausible. For this first experiment we assume a
certain extent of image processing that has already identified
the object and hand coordinates as keypoints in this image. We
compose the context for learning out of these basic coordinates
plus additional noise dimensions to challenge learning. At
every timestep t the agent is assumed to be still in position
xt−1, with the object at position ot. With that we construct
the learner’s context as ct = (ot;xt−1; ε)∈R6 with gaussian
noise ε∈R2, εi∼N (0.5, 0). For the to be estimated functions
ĥ, f̂ , êc, and êa we use a locally-linear learning formulation
identical to [18] with receptive field radii 2.0, 0.25, 0.5,
and 0.5 respectively. As a design choice we selected n = 2
components to be extracted from the 6 dimensional context
and 3 dimensional action.

Reward: The reward rt provided to the learner is com-
puted using a simple saliency model based on a difference-
of-gaussians procedure (simplified from Itti’s saliency model
[39]). After the agent has received the context ct (containing
an image of the old action at−1) and selected a new action
at, we compute a reward based on the “after-action” image
containing the object position and the new action at. We first
compute the original arm image (see Fig. 4(a), left). Then, we
compute a “pyramid of gaussians”: The image is smoothed
with a 5x5 gaussian kernel and scaled down by a factor of
2. This procedure is repeated 4 times. The saliency map (Fig.
4(a), middle) is computed out of these 5 images (original &
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Fig. 5. Schematic organization of the experiment

4x smoothed) by taking the the difference between any two
of them, and adding up the amplitudes of those differences.
Now considering the most salient point would mean to look at
the most interesting pixel. However, we assume that the agent
might not just attend to a single visual receptor but rather a
region in the visual scene. Therefore we smooth the saliency
map on a large scale (Fig. 4(a), right) with a gaussian filter
with σ = 10 pixels width which models the total width of
the agent’s effective visual field. The highest value of this
smoothed saliency encodes the average saliency around that
point, and hence a measure of how much information the agent
can have in its visual field. We manually normalized the scale
of these these values such that they approximately lie in a
range [0; 1] and consider these the rewards rt.

Procedure: We conducted this experiment with 5 inde-
pendent trials with t=106 samples each. During a continuous
movement of the object in the visual scene we thereby per-
formed continuous online learning of the LGA with learning
rates ηd = 0.015, ηc = 0.005, and ε = 0.05. While the
entire procedure is possible in an online fashion only, we
decided to perform an additional consolidation phase to speed
up learning. Therefore the generation of new samples is
interrupted every epoch of 1.000 samples, and the last 10.000
samples are presented in random ordering 10 more times.

Latent Goal Analysis describes how an agent can learn
internal abstractions in terms of goals and self-detection. It
does not instantaneously describe a strategy to select actions.
However, we can use the goal- and self-detection to perform
self-supervised motor learning: the executed actions at and
estimated outcomes x̂t = f̂(at) allow to generate a supervised
learning signal for common methods of motor learning [3],
that can be used together with the estimated goal x̂∗

t = ĥ(ct)
to perform goal-directed motor-control. Here we utilize a
previous algorithm for goal babbling [18], that also directly
utilizes the goals in order to scaffold learning. This algorithm
learns an inverse model g : x̂∗ 7→ a from the self-generated
examples (x̂t,at). In each timestep the action is selected by
trying to accomplish the goal by means of the inverse model

plus some exploratory noise Nt:

at = g(x̂∗
t ) +Nt(x̂

∗
t ). (5)

For this we use a learning rate 0.02, local model distances
0.15 and exploratory noise with amplitude 0.15 (see [18]).

The entire organization of the experiment is shown in
Fig. 5. The world provides an object that gets encoded in the
context together with the last action performed by the agent.
The agent’s saliency system generates an information seeking
reward for the combination of context and action. Latent Goal
Analysis extracts the reward-relevant information from the
action (self-detection) and disentangles the goal from other
information in the context in order to explain the reward by the
relation between goal and self. The self-supervised information
from the self-detection is then used together with the estimated
goals by means of goal babbling in a closed loop.

Results: During the learning we ran an evaluation of
every 1.000 samples between two consolidation steps. We
investigated three questions:

• What does the self-detection encode?
• What does the goal-detection encode?
• What behavior results from that abstractions?

In order to investigate the representations we checked how
well the internal representations of outcomes x̂ and goals x̂∗

describe values of the actual effector position x and object
position o. Even if the internal variables encode them perfectly
there can be arbitrary shifts and translations in the internal
coordinate system. Therefore we computed the best linear
fit L from internal representations to actual variables. We
assessed the quality of the encoding by the normalized root-
mean-square error (NRMSE)

√
E [||Lx(x̂)− x||2]/

√
V ar [x]

(correspondingly for x̂∗ and o). If this error is 0, the value of
the actual variable can be perfectly (linearly) predicted from
the internal one: the internal representation encodes the actual
variable. A value of 1.0 means that the prediction gives an
error in the range of the variable’s variance, which indicates
that the internal variable does not encode the actual one at all.

Results for the self-detection are shown in Fig. 6. If LGA
should actually learn a representation of the robot’s own hand
just from saliency-based rewards, this would require a strongly
non-linear multi-dimensional mapping. Results show that al-
ready in the very beginning there seems to be a certain extent
of encoding with errors significantly below 1.0. However, this
results merely from the low versatility of actions in the begin-
ning. Goal babbling initially chooses actions close to a single
posture since it is not sufficiently trained yet. The outcomes
of such locally distributed postures can to a limited extent be
predicted with the randomly initialized self-detection. After
approx. 50 epochs the values stabilize around 0.2 which means
that 80% of the actual effector-position’s variance can be
explained by the internal representations. At later stages there
is a minimal increase of the error values which is because goal
babbling learns to use more and more different and wide-
spread postures. Hence, the population gets less local and
harder to describe due to non-linearities. Latent Goal Analysis



after all succeeds to learn the robot arm’s forward function
from joint angles to effector position by just using the saliency
reward. We additionally investigated the encoding by checking
what different coordinate axes in the learned representation
encode. The blue line in Fig. 6 shows the prediction of the
effector’s top/down coordinate from just the highest variance
principle component of the internal representation. Low errors
indicate that this axis indeed encodes top/down movements.

If LGA should learn a goal representation that describes
goal-directed reaching, then the extracted goals x̂∗ should
encode the object position o in relation to the own hand.
This could seem simple because the object location is already
directly encoded in the context c. However, this variable still
needs to (i) be identified as the relevant one among other
entries (noise and previous hand-position) in the context, and
(ii) set into the right relation (i.e. orientation, shift, scaling) to
the self-detection. In particular at later stages of learning the
own hand-position strongly correlates with the object position
due to goal-directed reaching, so that keeping track of the
right variable is far from trivial. Results in Fig. 7 show that
at the time of initialization the object position is not at all
encoded in the goal-detection. Then, the strongest principal
component of estimated goals x̂∗ quickly coincides with the
top-down axis of the object position (blue lines). Few epochs
later, the goals’ 2D values (red lines) do indeed largely encode
the actual object position with errors around 0.05.

Results so far show that the robot’s hand position and the
object position are indeed found as abstraction in the process
of self- and goal-detection. In order to check how well they fit
together (i.e. whether they are in the right geometric relation to
each other inside the observation space), we can now check
the behavior generated by goal babbling as a result of both
abstractions. In order to perform an analysis that excludes
exploratory noise (to check the representations themselves)
we evaluate the combination of goal-detection ĥ and inverse
model g (learned by goal babbling as inverse of the self-
detection f̂ ). The function g(ĥ(c)) suggests actions a for
any context c. Hence we can check those actions and see
whether they correspond to a reaching action towards the
object position encoded in c. We counted for the contexts
within one epoch how often the actions led to a contact of
either hand and object, or the whole arm and the object (based
on the geometries and sizes in Fig. 4(a)). Results in Fig. 8
show that learning rapidly seeks for contacts of arm and object
first, and shortly later establishes a 100% contact rate of the
robot’s hand and the object. Latent Goal Analysis together
with goal babbling indeed produces representations as well
as inverse models that correspond to goal directed reaching.
Remarkably, all of this is bootstrapped from a task-unspecific
reward based on visual saliency as a sole original learning
signal. Abstractions bootstrapped by LGA are then used as
self-supervised learning signal for goal babbling.

V. DISCUSSION

The autonomous development of goals is a fundamental
issue in developmental robotics. This paper has proposed
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a detailed conceptual framework and a mathematical opera-
tionalization for agents to learn goals themselves. We thereby
emphasized the need to consider and learn goals alongside
with self-detection of the own actions’ outcomes. Both can
then be compared in a common space. We suggest that goals
and outcomes together can be learned by considering them as
latent variables (i.e. abstractions) that can explain an observed
or expected future intrinsic or external reward. Hence, rewards
come first and are followed by goals as abstractions of them.
This initially leaves a tension with notions of rewards as a
result of goal-achievement [10], [28]. However, both might be
true, such that rewards and goals are in a circular relation that
leads to initially purposeless behaviors such as play.

We have experimentally shown that considering mere visual
saliency as a generic, task-unspecific information seeking
reward to be processed by our framework leads to abstractions
of self and goals, that ultimately lead to goal-directed reaching
behavior. In doing so we have not only shown what those
abstractions encode, but have already capitalized on them for
self-supervised motor learning and goal babbling.

We aimed at a general discussion and formalization of goals
alongside with an example. This obviously can not yet answer
all questions how our concept could apply to other cases.
However, we think that our work does indeed widely open the
door for such further investigations for instance about social
learning scenarios [13] or also other measures of intrinsic
motivation [5], [40].
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