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Abstract—The human brain has a huge number of neurons
connected to each other, forming a multitude of networks; no-
tably, such connectivity typically exhibits a small-world structure.
However, the brains of persons with autism spectrum disorder
(ASD) reportedly have what has been termed as “local over-
connectivity.” The neural activity of the ASD brain is also
atypical; resting-state EEG signals in the ASD brain have lower
complexity and enhanced power at low and high frequency
oscillations. In this study, we used a small-world network model
based on the model proposed by Watts and Strogatz to investigate
the relationship between the degree of local over-connectivity and
neural activity. We controlled the degree of local over-connectivity
in the model according to the parameters laid out by Watts
and Strogatz. We assessed connectivity using graph-theoretical
approaches, and analyzed the complexity and frequency spectrum
of the activity. We found that an ASD-like network with local
over-connectivity (i.e., a high clustering coefficient and a high
degree of centrality) would have excessively high power in the
high frequency band, and less complexity than that of a network
without local over-connectivity. This result supports the idea that
local over-connectivity could underlie the characteristic brain
electrical activity in persons with ASD.

I. INTRODUCTION

Autism spectrum disorder (ASD) is characterized by dif-
ficulties in social interaction and communication. Many re-
searchers have reportdd that the brains of patients with
ASD have atypical connectivity and neural activity [1]–[3].
However, the relationship between atypical connectivity and
atypical neural activity in ASD is not well understood.

In terms of connectivity, the brains of persons with ASD
reportedly have increased short range or local connectivity,
particularly in the frontal cortex [1]. From this observation,
the so called “local over-connectivity” hypothesis is derived
[1]. Given the importance of the frontal cortex in cognitive
functions such as language, emotion, and decision-making,
local over-connectivity could disturb communication between
the frontal cortex and other regions of the brain, thus producing
the characteristic disorder of social communication seen in
persons with ASD.

In the brain, neural networks have characteristic styles of
connectivity, or topologies. One of the most important is the
small-world network [4]. Small-world networks have many
triplet connections, in which three nodes connect to each other
to form a cluster. Note that this graph-theoretical definition of
a cluster differs from that used in the term cluster analysis, a
common method of data-mining. One feature of small-world
networks is that clusters connect to the larger network through
only a few connections. The path length, or shortest distance
between two nodes, is typically short in small-world networks.
The large number of clusters and short path lengths allow
small-world networks to store and integrate information. In
this study, we constructed a spiking neural network brain
model and focused on its topology to better understand the
relationship between connectivity and function.

Electroencephalography (EEG) studies report atypical
resting-state neural activity in ASD; specifically, one of these
atypical aspects is that of lower complexity than that found
in EEGs in typical development (TD). One such measure of
complexity is that of entropy-based complexity (i.e., multiscale
entropy, MSE), in which entropy-based complexity is calcu-
lated over multiple temporal scales. Bosl et al. [2] analyzed the
resting-state EEG signals of infants aged 6 to 24 months, and
determined that MSE can predict ASD risk. Wang et al. [3]
reviewed studies of atypical neural activity in individuals with
ASD and argued that EEG power in persons with ASD has
a U-shaped power spectrum. That is, EEG signals in ASD
have excessively high power at low frequencies (delta and
theta bands) and high frequencies (beta and gamma bands).
Thus, there is evidence of atypical neural activity in individ-
uals with ASD. The mechanism underlying the relationship
between atypical structure and atypical function, however, is
still unclear.

The aim of this study was to use the framework of small-
world networks to understand the relationship between con-
nectivity and neural activity in the normal and locally over-
connected ASD brain. We used the method proposed by Watts



and Strogatz to construct a small-world network [5], and to
control the extent of local over-connectivity without changing
the number of connections. Thus, we could directly evalu-
ate how variations in network structure affect network-level
function. We calculated graph-theoretical measures to assess
the degree of local over-connectivity in each network, and
evaluated neural activity using MSE [6], [7]. We also analyzed
the frequency spectrum of the simulated neural activity to
elucidate the relationship between the frequency of the neural
oscillation, its complexity, and network topology.

II. MODELING AND ANALYSIS

A. Network model based on the Watts and Strogatz model

We designed the initial network connectivity according to
the Watts and Strogazt model [5] to control the degree of
local over-connectivity of the network. First, we constructed
a lattice network (see graph A in Fig. 1) in which each
node connects to six neighboring nodes (three on each side).
Second, each connection in the lattice network is rewired with
a probability pWS. The larger pWS becomes, the greater the
randomness of the connectivity of the network. The lattice
network (pWS = 0) has a large number of clusters and long
path length. When pWS is slightly larger than zero, a few
connections are rewired to create shortcut pathways (the red
lines in Fig. 1) between clusters. A network with a limited
number of shortcut pathways is a small-world network as
shown graph B in Fig. 1. Here, we regarded the “lattice”
network, characterized by local over-connectivity, as the ASD-
like network, and the small-world network as the TD-like
network.

B. Spiking neural network model

We employed the Izhikevich spiking neuron model [8] to
construct our network model. This model can represent various
firing patterns of biological neurons (e.g., spiking, bursting,
and mixed mode firing patterns). Spiking neurons can fire
synchronously in various frequency bands, similarly to activity
patterns seen in the EEG. Furthermore, these spiking neurons
are computationally efficient, so a large-scale model of a
neural network is easily constructed. The neuron model is
described as:

dv

dt
= 0.04v2 + 5v + 140− u+ I, (1)

du

dt
= a(bv − u), (2)

where v denotes the membrane potential, u denotes the
membrane recovery variable related to the activation of ionic
currents, I denotes input current into the neuron and t is the
time. I is calculated as the sum of connection weights of the
firing pre-synaptic neurons that connect to the neuron. Eq. (3)
describes the after-spike resetting:

if v ≥ 30mv, then

{
v ← c

u← u+ d.
(3)

Fig. 1. Initialization of the connectivity structure of 100 neuron groups
using the Watts and Strogatz model [5]. The brown nodes and the green
edges indicate the neuron groups and connections, respectively. Graph A, a
lattice network, is the initial structure that has local over-connectivity, where
each node connects to six neighboring nodes, three on each side. All edges
are rewired with the rewiring probability pWS. As the probability increases,
network structure becomes more random. Graph B is a small-world network
that has a large number of clusters and short path lengths between these
clusters. Graph C is the random network, where the nodes are randomly
connected to others.

Here, a and b in Eq. (2) determine the time scale of u, c is
the resetting membrane potential, and d describes the after-
spiking reset of the recovery variable. We used excitatory
(regular spiking) and inhibitory (fast spiking) neurons which
neurons increase and decrease the probabilities of firing in
post-synaptic neurons, respectively. These parameters were
same as those in the Izhikevich model [8].

The other parameters in our model herein are summarized
in TABLE I, which were determined based on the previous
models [8]–[10]. Our model consisted of 100 neuron groups
(Ngroup). Each neuron group has 1,000 spiking neurons (N ),
where 800 neurons are excitatory (NE) and 200 are in-
hibitory (NI). Excitatory neurons are connected to 100 neurons
(= N × Cintra) belonging to the same neuron group. Each
excitatory neuron connects to six neighboring neuron groups,
and has three inter-connections (= N × Cinter) to neurons
in each neuron group. Inhibitory neurons have connections
to 100 excitatory neurons (= N × Cintra) in the same
neuron group. These intra-group connections are randomly
constructed. We set the numbers of neuron groups and inter-
connections high enough to sustain spontaneous activity and to
generate differences between network topologies with different
pWS values. In contrast, we determined the initial number of
inter-connections between neuron groups via the Watts and
Strogatz model. The rewiring probability (pWS) regulates the
degree of local over-connectivity (see Fig. 1). We tested the set
of pWS values: {0.0, 0.001, 0.002, 0.005, 0.01, 0.02, 0.05, 0.1,
0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}. The “lattice” network,
which includes local over-connectivity, corresponds to the
model representing ASD-like connectivity. We considered the
small-world network, with a large number of clusters and
short path lengths between these clusters, to be the model of
TD. We defined the intra- and inter-connections as the intra-
regional cortical connections and the white matter tract-based
connections in the real brain, respectively.

After initializing the model’s network connectivity using the
Watts and Strogatz parameters [5], its network connectivity is



Fig. 2. Simulation timeline after connectivity initialization. We analyzed
spontaneous neural activity during the red block.

updated through the spike-timing-dependent plasticity (STDP)
rule proposed by Izhikevich [11], which enables the network
to be spontaneously active. STDP is a self-organizing process
that adjusts the weights of connections between neurons based
on their pre- and post-synaptic spike timing. The update rule
of the connection weight is given as:

∆w =

{
A+ exp(−t/τ+) if t > 0

A− exp(t/τ−) if t < 0,
(4)

where t denotes the time lag between firings of the pre- and
post-synaptic neurons:

t = tpost,fire − tpre,fire. (5)

If a neuron fires, the time lag (Eq. (5)) is calculated by
the spike time of the nearest pre- or post-synaptic neuron,
and the connection between them is updated according to
Eq. (4). Here, the cases of t > 0 and t < 0 represent
long term potentiation (LTP) and long term depression (LTD),
respectively, and τ+ and τ− are constants that denote the
durations of the time lags between firing. The constants A+

and A− denote the amplitude of the weight change or update.
The timetable of the simulation is shown in Fig. 2 and the

parameters are described in TABLE I; they were determined
based on the previous models [8]–[10]. The STDP (self-
organization process) and tonic random input continued until
1000 and 1100 sec, respectively. We then analyzed sponta-
neous activity (from 1100 to 1200 sec) to observe the activity
in the absence of tonic random input.

C. Graph-theoretical analysis

We evaluated network structures in terms of their graph-
theoretical properties, i.e., the clustering coefficient, the de-
gree centrality, and small-worldness [12]. The network graph
consisted of 100 nodes that represent neuron groups. The
clustering coefficient and degree centrality are indices of
local over-connectivity, for where local over-connectivity is
defined by increased short-range connectivity (i.e., connections
between regions within the same lobe or cerebral hemisphere).
Small-worldness is defined by the shortest path length and
clustering coefficient. These properties are conceptualized in
Fig. 3.

The clustering coefficient indicates how many closed trian-
gular connections (the red and blue connections in Fig.3A)
each node has, and is calculated as:

Fig. 3. Concepts of the three graph-theoretical measures. Panel A shows
clustering coefficient of the ith node. The clustering coefficient indicates how
many closed triangular connections (the red and blue connections in panel
A) a node has, and is calculated by Eq. (6) or Eq. (7) (see Section II-C).
The connections containing the dashed lines and forming closed triangular
connections indicate the possible triangles in Eq. (6). Panel B shows degree
centrality of the ith node. The degree centrality indicates the number of
connections a node has (the red connections in panel B), and is calculated by
Eq. (8). Panel C shows the path length from the ith node to the jth node. The
path length (red line) indicates the shortest distance between these nodes.

Ci =
number of closed triangles

number of possible triangles
. (6)

Since our model is a directed weighted network, we used an
extended clustering coefficient [13]:

Ci(W ) =
[W 1/3 + (W⊤)1/3]3ii

2[dtoti (dtoti − 1)− 2d↔i ]
, (7)

where W = {wij} is a weighted matrix of connectivity of 100
nodes, wij denotes the connection weight from the ith node
to the jth node, dtoti = dini + douti denotes the total number of
connections into and out of the ith node, and d↔i denotes the
number of bilateral connections between the ith node and its
neighbors.

The degree centrality indicates the number of connections.
The value of the ith node is given as:

degi =
N∑
i ̸=j

(wij + wji) (8)

where N is the number of nodes.
The path length is the shortest distance between two nodes

in a network. If there exists a connection between the ith and
jth node (wij > 0), then its distance is defined as:

dij =
1

wij
. (9)

The path length between any two nodes is given as the total
distance along the paths.

Small-worldness [12] is an index that quantifies the small-
world status of a network. The small-worldness for a network
G is defined as:

SG =
CG/C0

LG/L0
, (10)

where CG and LG denote the averaged clustering coefficient
and the averaged path length of G, respectively. LG is the



TABLE I
PARAMETERS OF THE SIMULATION MODEL USED IN THIS STUDY.

parameters values descriptions notes
Dintra,exc [0,20] Transfer delay of excitatory synapse in neuron group (uniform dist., msec)
Dintra,inh 1 Transfer delay of inhibitory synapse in neuron group (msec)
Itonic 20 Tonic input -
τ+ 20 Time constant of LTP (msec)
τ− 20 Time constant of LTD (msec)
A+ 0.1 Amplitude of update weight (LTP) -
A− -0.12 Amplitude of update weight (LTD) -

winit,exc 6.0 Initial weight of excitatory synapse -
winit,inh -5.0 Initial weight of inhibitory synapse -
wupper 10.0 Maximum value of weight -
NE 800 The number of excitatory neurons in a neuron group -
NI 200 The number of inhibitory neurons in a neuron group -
N 1000 The number of neurons in a neuron group = NE +NI

Cintra 0.1 The percentage of connections in a neuron group -
Dinter,exc [10,30] Transfer delay of excitatory synapse between neuron groups (uniform dist., msec)
Ngroup 100 The number of neuron groups -
Cinter 0.003 The percentage of connections between neuron groups -
pWS [0.0,1.0] Rewiring probability -
tstep 1 Time step (msec)
Ttotal 1200 Total simulation time (sec)
Ttonic 1100 Time length of tonic input (sec)
TSTDP 1000 Time length of self-organization through STDP (sec)
Nsim 10 The number of independent simulations -

average of the shortest paths across all pairs of nodes in G.
CG and LG are scaled by their counterparts in the lattice
network (pWS = 0.0), C0 and L0. The small-world network
has higher small-worldness than that of the lattice and the
random networks.

D. Analysis of network activity

We employed the local averaged potential (LAP) [14] as a
measure of network activity. The LAP represents synchronous
activity of excitatory neurons in a neuron group. The LAP
signal in the ith neuron group is shown in Eq. (11):

LAPi(t) =
1

NE

NE∑
j=1

vi,j(t), (11)

where vi,j denotes the membrane potential of the jth ex-
citatory neuron in the ith neuron group. We analyzed the
complexity and frequency spectrum of the LAP signals.

The MSE was proposed by Costa et al. [6], [7] to define the
complexity of biological time-series signals. First, an original
time-series signal x(t) is downsampled by multiple temporal
scales to produce so called coarse-grained signals y(t):

y(t) =
1

θ

i=tθ∑
i=(t−1)θ+1

x(i) (1 ≤ t ≤ N/θ), (12)

where θ denotes the scale factor. Next, the sample entropy of
each coarse-grained signal is described as:

SampEn(r,m,N) = − ln[Cm+1(r)/Cm(r)], (13)

where

Cm(r) =
number of pairs(i, j) (|zmi − zmj | < r, i ̸= j)

(N −m+ 1)(N −m)
.

(14)
Here, zmi = {yi, yi+1, · · · , yi+m−1} denotes a subsequence
of the coarse-grained signals from the ith to the (i +
m − 1)th, m denotes the length of the subsequence, Y =
{y1, · · · , yi, · · · , yN} denotes the coarse-grained signal and
N denotes the length of Y . For this study, we set m = 2 and
r = 0.15. In Eq. (14), Cm(r) represents the probability that
similar pairs (zmi and zmj ) exist in the m-dimensional space.
The sample entropy evaluates unpredictability of time-series
signals as the logarithmic ratio of the probabilities, Cm+1(r)
and Cm(r).

Neural activity oscillates over a wide range of frequencies.
To identify the predominant frequency characteristic of the
neural activity, we analyzed its frequency spectrum using the
fast Fourier transform.

III. RESULTS

Fig. 5 shows the LAP signals and frequency spectrum in
the neuron group in a lattice and a small-world network. The
power of high-frequency bands (around 50 Hz) in a lattice
network was greater than that in a small-world network.

We calculated the MSE of the LAP signal of each neuron
group in each network. Fig. 4 shows the MSE curve of
each neuron group in a lattice network (pWS = 0.0), a
small-world network (pWS = 0.2) and a random network
(pWS = 1.0). These figures demonstrate that the MSE curves
tended to become lower with coarse-graining, thus indicating
that coarse-graining acts as a low-pass filter. Therefore, the
neural oscillation with a lower frequency had lower complexity
than the one with a higher frequency.



Fig. 4. The multiscale entropy-based complexity (MSE) curves of each neuron group in a lattice network (pWS = 0.0), a small-world network (pWS = 0.2)
and a random network (pWS = 1.0). The y-axis indicates the sample entropy, and the x-axis indicates the scale factor θ (see Eq. (12), Section II-D).

Fig. 5. Representative spontaneous activity (LAP) signals of a neuron group
in the lattice network (red, pWS = 0.0) and that in the small-world network
(blue, pWS = 0.2). The upper figure shows the LAP signals of neuron groups
from 1100 to 1101 sec, and the lower figure shows the amplitude of each
frequency spectrum sampled from the LAP signals from 1100 to 1200 sec.

Fig. 6 shows the relationship between the sample entropy
and the small-worldness of each network. The sample entropy
tended to decrease with a lower pWS at each scale. The
small-worldness value was greatest at pWS = 0.2, and both
the lattice and random networks had less small-worldness.
Notably, the network with the highest small-worldness (the
TD-ike network, pWS = 0.2) has higher complexity than the
lattice (ASD-like) network.

Fig. 7 shows the relationship between the graph-theoretical
properties and the complexity of neural activity. The neu-
ron groups in the lattice network (pWS = 0.0) had higher
clustering coefficients and degree centrality than those in the
small-world network (pWS = 0.2) and a random network
(pWS = 1.0). Notably, the neural activity in the lattice network
had lower complexity.

Fig. 8 shows the relationship between peak frequency
and complexity of neural activity. Neural activity dominated
by a higher frequency had lower complexity. These results
suggested that the neuron groups in the lattice network had
higher clustering coefficients and degree centrality and that
such connectivity enhances the high-frequency components of

Fig. 6. The relationship between sample entropy and small-worldness. The x-
axis indicates pWS (the rewiring probability of the Watts and Strogatz model
[5]). The upper left panel shows the small-worldness, the other panels show
the sample entropy of scale 1, 10, 20, 30 and 40, respectively. The error bars
indicate standard error across 10 independent simulations.

the neural oscillation, thus decreasing its complexity.

IV. DISCUSSION AND CONCLUSIONS

To understand the mechanism underlying the lower com-
plexity of neural activity in the ASD brain, we investigated
the relationship between structural connectivity and neural
activity. We focused on the atypical connectivity seen in ASD
called local over-connectivity and constructed a spiking neural
network model to emulate it. In this model, the degree of
local over-connectivity was modified according to the Watts
and Strogatz model [5]. We analyzed its connectivity structure
using graph theory and measured the frequency spectrum
and complexity of the neural activity. Our simulation showed
that the neural activity of a lattice network (ASD-like) had
excessively high power in high frequency bands and lower
complexity than the other tested networks. This result agrees
with previous studies analyzing resting-state EEG signals in
ASD [2], [3].



Fig. 7. The relationship between connectivity structure and the complexity
of neural activity. Each marker corresponds to a neuron group in the network
and its color indicates the sample entropy averaged over all 40 scales. The
x-axis indicates the degree centrality and the y-axis indicates the clustering
coefficient.

Fig. 8. The relationship between peak frequency and complexity of neural
activity. Each marker corresponds to a neuron group in the network and its
color indicates the sample entropy averaged over all 40 scales. The x-axis
indicates the peak frequency of neural activity and the y-axis indicates the
amplitude.

Based on our results, we propose the following hypothetical
mechanism:

1) Due to the local over-connectivity, interactions between
neighboring neuron groups or in a local cluster predom-
inate (see Fig. 7);

2) Excessive local interaction synchronizes local neural
activities, and enhances high-frequency oscillations;

3) The activity dominated by high-frequency oscillations
leads to its lower complexity.

Several previous studies of the human brain reported similar
phenomena. Ghanbari et al. [15] investigated the resting-
state EEG of persons with ASD and TD, and proposed

that enhanced connectivity would lead to better regulation of
neural activity, resulting in lower complexity. Courchesne and
Pierce [1] hypothesized that the brains in persons with ASD
have enhanced local synchronization that would disturb inputs
from afferent sources, such as sensory areas, leading to de-
synchronization between distant regions.

As shown in Fig. 5, although high-frequency oscillations
in a lattice network, i.e., the ASD-like network, were greater
than that in the small-world network, i.e., the TD-like network,
there were no significant differences in the lower frequency
bands between the lattice and the small-world networks.
This is in contrast to the prediction of a U-shaped spectrum
proposed by Wang et al. [3]. Further studies are needed to
understand the origin of the higher power in the low frequency
band.

In this study, we analyzed spontaneous activity of neural
networks. In order to better understand why persons with ASD
have difficulty in social interaction, show repetitive behaviors,
and dysesthesia, future studies will investigate how external
inputs to typical and atypical networks affect neural activity.
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