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Abstract—A small-world topology has been found in the
cortical neural connectivity. However, the role of the topology in
neural information processing has yet not been well understood.
In this article, we investigate the performance of an echo state
network (ESN) within a small-world topology in an economical or
cost-effective environment, i.e., reduced number of input/output
reservoir nodes. The ESN, a type of recurrent neural network,
has a reservoir network where nodes are connected to each
other with fixed weights. We introduce the small-world topology
into the reservoir network. The ESN learns about the connected
weights from the reservoir nodes to an output layer. In order
to leverage the potential of the small-world topology, we limit
the number of the reservoir nodes that receive external input
(i.e., input nodes) or omit their signals to the output layer
(i.e., output nodes). In addition, we segregate the input nodes
from the output nodes, thereby necessitating the propagation of
the input signals to the output nodes through the small-world
reservoir. In our experiment, the ESNs learned to predict the
next input of chaotic time-series. The small-world ESN exhibited
high performance even when the number of input and output
nodes was reduced, whereas the performance of the standard
random or fully connected ESNs declined with reduced number
of nodes.

I. INTRODUCTION

While brain cortical networks are sparse, complex, and
economical [1], [2], their information processing is excellent.
The nodes constituting the networks are not fully connected
with each other and construct sparse complex networks. One
of the most famous topology of such networks is the “small-
world” topology [3]. Many studies have been conducted to
investigate the small-world topology in the anatomical and
functional networks of human brains (e.g., [4], [5]), brains
of monkeys and cats [6], and nervous systems of C. elegans
[3] (refer to [7], [8] for reviews). However, the role of the
topology in neural information processing has not been well
understood.

A small-world network lies between regular and random
networks. Watts and Strogatz [3] proposed a method to consti-
tute the network. At first, they constructed a regular network
where nodes were connected only with their neighbors (see
Fig. 1 (a)). Next, these connections were rewired with a
probability p to a randomly selected node. The network for
p = 0 is still regular, while p = 1 results in a random
network (Fig. 1 (c)). When p lies between 0.01 and 0.1, it
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Fig. 1. The small-world model proposed by Watts and Strogatz [3]. The

connections of the regular network (a) are rewired with probability p. The
network with p = 0.1 has a small-world topology (b), and the network with
p = 1 turns random (c).

is called a small-world network and can spread information
with a minimum number of long-range short cuts, resulting
in low wiring-costs (Fig. 1 (b)). This type of network is
characterized by two factors: the shortest path length, L, and
the clustering coefficient, C. L is defined as the average
number of connections in the shortest path between two nodes.
C is defined as the density of closed triangles, or triplets,
consisting of three connected nodes. A regular network is
characterized by a large C' as well as a large L, while in
a random network both L and C are small. In contrast, the
small-world network has a small L and a large C.

One approach to understand the potential of the small-
world topology is by evaluating the performance of artificial
neural networks with respect to the topology. Many researchers
have reported that the small-world topology can improve their
learning performance [9]-[13]. Simard et al. [9] installed the
topology in a multi-layered feedforward network with back-
propagation. They rewired some feedforward connections of
the regular (standard) feedforward network and demonstrated
that the small-world topology improved its learning perfor-
mance. In addition, the small-world topology can provide a
better associative memory for a Hopfield network than the
regular or random networks [12], [13]. We would like to
investigate the effects of the small-world topology from a more
dynamical perspective.

Reservoir computing is a kind of a recurrent neural network
[14], [15]. Randomly connected nodes constitute the reservoir,



receive external inputs, and create complex dynamics. All, or
some, reservoir nodes emit their state signals to an output
layer (readout) through their output connection weights. The
greatest feature of reservoir computing is to learn about the
output weights in a supervised manner, while other weights
between the reservoir nodes are fixed. An echo state network
(ESN) is a type of reservoir computing in which the readout
is linear [14]. This type of architecture is known as a cortico-
striatal model where the reservoir represents the cortex, and
the learning for the readout is considered as a function of the
striatum [16]. Therefore, this seems to be a reasonable model
to investigate the effects of the small-world topology on brain
dynamics.

Some studies have already introduced the small-world topol-
ogy to the reservoir of the ESN and evaluated the performance
of the network [17], [18]. However, they concluded that the
topology did not significantly improve its learning perfor-
mance. In this respect, we have assumed that an excessively
rich connectivity obscured the advantages of the small-world
topology. Their ESNs, as standard ESNs, possessed a direct
connection from the input layer to the output layer, and not
through the reservoir, and a feedback connection from the
output to the reservoir. In addition, all reservoir nodes received
signals from the input layer and sent their state to the output
layer. Such non-economical configurations might boost their
learning performance to a maximum and hide the potential
of the topology. It is a fact that in the real brain, not all
neurons receive sensory input or emit output, e.g., motor
commands. Although it has been known that an ESN with both
small-world and scale-free topologies exhibits better learning
performance than the standard ESN [19], we focus on the only
small-world topology.

We examine the performance of the ESN with the small-
world topology in an economical environment to demonstrate
the merits of the topology. We limit the number of reservoir
input nodes that receive signals from the input layer as well
as the output nodes that send signals to the output layer.
In addition, we segregate the reservoir input nodes from the
output nodes to ensure that the input signals pass through
the small-world network. We abolish the direct connections
between the input and output layers as well as the feedback
connection. In this way, our ESN has fewer connections and,
therefore, its learning cost is expected to be lower. We examine
how the small-world topology overcomes these economical
constraints and realizes an efficient learning.

II. SMALL-WORLD ECHO STATE NETWORK

A. Architecture of an echo state network

Fig. 2 shows the proposed ESN with the small-world
topology. Some reservoir nodes receive [ -dimensional in-
put u(t) = (uy(t), - ,ux(t))", weighed by a matrix
Wi, at time ¢. States of the N reservoir nodes, x(t) =
(w1(t),--- ,on(t))T, are updated according to

x(t+1) = f(Wipu(t + 1) + Wx(t)), (1)
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Fig. 2.  The echo state network with a small-world topology. The reservoir
weight matrix W represents a ring shaped small-world topology. The part of
the reservoir nodes that is enclosed in the blue box receives external input, and
the other part that is enclosed in the purple box sends its states to the output
layer. The output connection weights in Wyt are trained in a supervised
manner.

where W is an N x N reservoir weight matrix and is
constant over the learning phase. We employ the hyperbolic
tangent as the function f. Of importance here, is that the only
Nin (< N) reservoir nodes (input nodes) receive u(t), that
is, Wy, is sparse. These limited input nodes are enclosed
within the blue box in Fig. 2. Similarly, only Ny (< N)
reservoir nodes (output nodes) pass their states Xou(t) into
the output layer, shown enclosed within the purple box in
Fig. 2. This constraint on the I/O nodes helps clarify the
potential of the small-world topology. The M -dimensional
output y(t) = (y1(t),--- ,yar(t)) " at time ¢ is given as

Y(t) = fout (Woutxout (t)>7 2)

where W,y is the M X N,y output weight matrix. This
matrix is trained with the desired output yq(t). Since the
output function fo, is linear, the training is attained using a
simple linear regression. After the reservoir is driven 7" times,
we define two matrices: (1) a state collection matrix, S, of
dimensions T X Nyyut, where S = (Xout(1),  , Xout(T))
and X,,¢(t) indicates a state vector of the output nodes,
and (2) a desired output collection matrix, D, of dimensions
T x M, where D = (yq(1),---,ya(T)). The output matrix
is computed as

Woue = ((STS)'STD)". 3)

This model has fewer connections and, thus, is more eco-
nomical than the previous ones [17]-[19]. We expect that the
small-world topology works advantageously in such econom-
ical configurations. The differences between this model and
the previous models are as follows:

e Limitation on the number of the I/O nodes (i.e., Nin,
Nouwt < N). In the previous models, all nodes were
capable of receiving input and emitting output (i.e.,
N; in = {Vout = N )

o Segregation between input and output reservoir nodes.
The input signals have to travel to the output nodes
through the small-world network to achieve high perfor-
mance.



« Abolition of both the direct connection between u(t) and
y(t) and the feedback connection between y(t) and x(¢).
Computing the inverse matrix in Eq. (3) is most expensive.
The learning cost of this model is significantly lower than the
previous models or standard ESNs as it can reduce the size of
the output matrix 7" X Ngyy.

B. Small-world reservoir

We embed the small-world topology into the reservoir
weight matrix, W, based on the Watts and Strogatz method
[3]. At first, we construct a regular network of N nodes, where
the nodes are arranged in a ring shaped pattern (see Fig. 1
(a)) and each node is connected to its neighboring (previous
and next) E nodes. The total number of the connections is
E x N, and thus, W (the N x N matrix) is sparse. Each
directional connection is then rewired with a probability p to
another randomly selected node. These connection weights are
sampled from an uniform distribution, which constitutes an
initial weight matrix W. The matrix is scaled by its largest
absolute eigenvalue (spectral radius) |Apax/|:

W,
=« ) €]
| Amax|

where « is a scaling constant. This scaling enables the network
to obtain the “echo state property” that can sustain appropriate
reservoir dynamics [14]. In the standard ESNs, the reservoir
possesses the echo state property when its spectral radius
satisfies |Amax| < 1.

w

III. EXPERIMENTAL CONFIGURATION
A. Network conditions

We assume the number of reservoir nodes, N, is 1000, and
the number of connections for each node, E is 10. The input
weights in Wj,, are drawn from an uniform distribution over
[—0.5,0.5]. The scaling constant « in Eq. (4) is set to 1.25.
These parameters are fixed in all our experiments. The most
important parameter is the number of I/O reservoir nodes, Nj,
and N,,;. We examined the model in the cases where the
numbers of the I/0 nodes N, = Nyt = 1000, 500, 300, 100,
and 50. When Nj, = Nyt = 1000, the model is identical to
the previous small-world ESNs. In contrast, the model where
Nin = Nout = 50 is the most economical.

We tested three kinds of the networks:

o Fully connected ESN (for reference): The reservoir nodes
are fully connected to each other. The weights in Wy, are
sampled from an uniform distribution over [—0.5, 0.5] and
do not conform to the small-world topology.

o Small-world ESN with random I/O nodes: The reservoir
forms a small-world topology. The I/O nodes are ran-
domly selected and can overlap.

o Small-world ESN with segregated 1/O nodes: The reser-
voir forms a small-world topology. The N;, input nodes
are selected in a line on the ring shape, and the N,y
output nodes are positioned on the opposite side of the
input nodes as shown in Fig. 2.

In the cases of the small-world ESNs, the rewiring probability
p is set to O (regular), 0.001, 0.01, 0.1, 0.2, 0.5, or 1 (random).

il
Ul

—1=17 —1=25 —1=34

02 1 W
04 1

-0.6 1

-0.8 1

1.0 1
0.8 A
06 1
04 A
0.2 A
0.0 +
5 10 181 W/Z

-1.0 4

Fig. 3. The Mackey-Glass time-series with 7 = 17, 25, and 34, represented
by the blue, gray and purple curves, respectively.

B. Data set and evaluation

Our model learned the Mackey-Glass (MG) system [20] that

is expressed as a nonlinear time delay differential equation:

dz Bx(t — 1)

dt 14zt —71)"
where z denotes the state and 7 is the time delay. We set
that v = 0.1, 8 = 0.2, and n = 10. Since the current state
depends on the state that was recorded 7 time steps earlier, a
learner of the time-series has to store the input for 7 time steps.
The time-series with sufficiently large 7 behaves chaotically,
and therefore, it has often been used as a benchmark task of
time-series prediction (e.g., [21]). We solved Eq. (5) using the
fourth order Runge—Kutta method. We fed the state into the
model as the one-dimensional input u(t) = z(t) (i.e., K = 1),
and presented the next state x(¢ + 1) as the one-dimensional
desired output y4(t) = z(t + 1) (le., M = 1).

We prepared three time-series with 7 = 17, 25, and 34. Each
time-series was scaled between —1 and 1. Fig. 3 shows these
time-series between 1 and 500 data points. The reservoir was
driven for 4100 data points as it was fed the time-series inputs.
The reservoir states for the first 100 data points were discarded
taking into consideration the burn-in period. The data points
from 101 to 2100 and from 2101 to 4100 were used for
training and testing the model, respectively. We evaluated the
model by the mean squared error (MSE) between the output
and the true MG time-series in the test period. We ran the
model 100 times, independently, and measured the median of
their MSEs in each case because the MSEs in cases of the
unsuccessful learning were extremely large.

We analyzed the basic properties of the reservoir networks
in terms of the echo state property and small-worldness. The
echo state property is measured by the spectral radius [Apax|-
In general, the reservoir works well if the value is below one
or close to one [14]. The small-worldness is defined by the
shortest path length, L, and the clustering coefficient, C'. These
are scaled by their counterparts in the regular network, Ly and
Cy, and the ratio (C'/Cy)/(L/Ly) indicates small-worldness.

— (), (&)



TABLE I
NETWORK PROPERTIES FOR THE ECHO STATE AND SMALL-WORLDNESS.

Network [Amax| L/Log C/Co (C/Cy)/(L/Lo)
Fully connected 0.93 - - -
p = 0 (regular) 1.24 1.00 1.00 1.00

p =0.001 1.24 0.56 1.00 1.81

p = 0.01 1.24 0.18 0.98 5.55

p=20.1 1.18 0.09 0.74 8.38

p=0.2 1.12 0.08 0.53 6.46

p=20.5 0.97 0.07 0.14 2.08
p =1 (random) 0.93 0.07 0.02 0.23
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Fig. 4. The mean squared errors of the fully connected echo state networks.
They learned the Mackey-Glass equation with 7 = 17, 25, or 34, represented
by the blue, gray, and purple lines, respectively.

IV. RESULT
A. Network property

The network properties are summarized in Table 1. The
spectral radiuses of the fully connected network and the
random networks (p = 1 and 0.5) were less than 1, while
those of the regular and small-world networks were greater
than 1. This classical theory predicts that the performances of
the fully connected and random networks are superior to those
of the regular and small-world networks within a standard
configuration. The network with p = 0.1 had the best small-
worldness, i.e., a low L and a high C.

B. Fully connected ESN

Fig. 4 shows the MSEs of the fully connected ESNs for the
MG time-series with 7 = 17, 25, and 34. The MSEs were
very small if the number of the I/O nodes (N, and Ny,t) was
1000, where all nodes could receive input and emit output.
However, the MSEs increased as the number of the I/O nodes
decreased. This tendency did not depend on the time delay 7
in the MG. This result clearly highlights the weakness of the
fully connected ESNs that require a sufficiently high number
of I/O nodes.

C. Small-world ESN with random I/O nodes

Fig. 5 shows the MSEs of the small-world ESNs where the
I/O nodes were randomly selected and could overlap. Fig. 5
(a), (b), and (c) indicate the results for the MG time-series with
T = 17, 25, and 34, respectively, however, they show similar

MSE landscapes. The MSEs were very small for random
networks (p = 1) with many I/O nodes. In contrast, their
MSE:s increased as the number of I/O nodes decreased. This
result is similar to the results of the fully connected random
networks shown in Fig. 4. Interestingly, this relation was
reversed in the regular network (p = 0); the MSEs decreased
as the number of the I/O nodes decreased. Regular networks
failed to learn of the MG when they had many I/O nodes.
The small-world networks (p = 0.1) showed an intermediate
performance between random and regular networks. With a
moderate number of I/O nodes, i.e., between 100 and 300, the
small-world networks were superior to the random and regular
networks.

D. Small-world ESN with segregated I/O nodes

Fig. 6 shows the MSEs of those small-world networks where
the I/O nodes were fully segregated. These figures provide
results for the MG time-series with 7 = (a) 17, (b) 25, and
(c) 34, respectively. As seen earlier, there were not many
significant differences between the time delay 7. The MSE
curve in the case of random networks (p = 1) is similar to
those of the fully-connected networks (refer to Fig. 4) and the
random networks with randomly selected I/O nodes (refer to
Fig. 5). An important characteristic appeared in the MSEs of
regular networks (p = 0). Their MSEs remained large even
when the number of I/O nodes was 50, which was different
from the previous results shown in Fig. 5. Consequently, small-
world networks (p = 0.1) showed optimal performance when
number of the I/O nodes was small.

V. DISCUSSION

We demonstrated the advantage of the small-world topology
in an economical configuration, i.e., small number of I/O
nodes. The results shown in Fig. 5 suggest that the cluster
structures in regular networks may be important for storing
information that can help predict the future input (refer to
Table I). However, the performance declined in the case of a
regular network with many I/O nodes and this was probably
because the memorized information was easily broken by the
external input. In addition, the memory function did not work
when the I/O nodes were separated (refer to Fig. 6). I/O
segregation forced the network to transfer the input signals
to the output nodes, which requires a low shortest pass length
between these nodes. Failure to learn in regular networks is
caused by their high shortest pass length. In contrast, the
small-world network has both a low shortest pass length and
a high clustering coefficient (refer to Table I). The capabilities
to memorize and transfer information in the small-world
networks might improve the learning performances of the
ESNs. It is to be noted that the spectral radius does not
explain this tendency. We propose that the shortest path length
and clustering coefficient are useful parameters to explain
the performance of the ESN, especially in an economical
configuration.

To verify the hypothetical mechanism mentioned above, we
should analyze in depth the information flow in a small-world
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reservoir. Boedecker et al. [22] quantified computational ca-
pabilities of the randomly connected ESNs using information-
theoretical measures. Eventually, we would like to establish a
theory for relationship between the graph-theoretical parame-
ters (e.g., the shortest path length and clustering coefficient)
of neural networks and the information-theoretical measures
of their neural dynamics.

The ESNs with the small-world topology displayed high
performance under two constraints: reduction as well as seg-
regation of the I/O nodes. Inversely, the small-world topology
may be a result of evolutionary optimization under these
constraints. The first constraint is relative to the wiring cost,
i.e., minimization of total axonal length. The wiring cost has
been considered as an important evolutionary pressure [23],
[24]. Harter [24] reported the emergence of a small-world
topology in the brain network of a robot as a result of the
optimization of its connectivity by an evolutionary algorithm
considering the wiring cost and task performance. We propose,
that in addition to the wiring cost, the second constraint, i.e.,
I/O segregation, be the key to the emergence of the small-
world topology. Even under this constraint, the small-world
topology enables the network to rapidly and efficiently transfer
input information to output regions.

Characteristic topologies of brain networks are not only
small-world [4], [6], [7] but also scale-free [25] and rich-club
[26]. These topologies emphasize the existence of hub cortical
regions that have many connections with other regions. The
hub nodes seem to have a great impact on neural dynamics.
We can understand more about cortical information processing
if our constructive approach is able to clarify the role of the
hub organization.

VI. CONCLUSION

We found that the small-world topology is advantageous
in neural information processing of the ESNs although the
conventional studies [17], [18] have not shown this. The key
settings were reduction and segregation of I/O nodes. The
small-world ESNs exhibited better performance in time-series
prediction than the random and regular ESNs when the number
of I/O nodes was much smaller than those of the overall
nodes, and when the I/O nodes were fully segregated. This
high performance might relay on the high memory capability
and fast information transfer of the small-world networks. This
finding leads to better understanding of cortical information
processing, an evolutionary origin of brain networks, as well
as more economical and efficient ESNs.
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