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Abstract—Brain-body interactions guide the development of
behavioral and cognitive functions. Sensory signals during be-
havior are relayed to the brain and evoke neural activity. This
feedback is important for the organization of neural networks via
neural plasticity, which in turn facilitates the generation of motor
commands for new behaviors. In this study, we investigated how
brain-body interactions develop and affect reward learning. We
constructed a spiking neural network (SNN) model for the reward
learning of canonical babbling, i.e., combination of a vowel and
consonant. Motor commands to a vocal simulator were generated
by SNN output and auditory signals representing the vocalized
sound were fed back into the SNN. Synaptic weights in the SNN
were updated using spike-timing-dependent plasticity (STDP).
Connections from the SNN to the vocal simulator were modulated
based on reward signals in terms of saliency of the vocalized
sound. Our results showed that, under auditory feedback, STDP
enabled the model to rapidly acquire babbling-like vocalization.
We found that some neurons in the SNN were more highly
activated during vocalization of a consonant than during other
sounds. That is, neural dynamics in the SNN adapted to task-
related articulator movements. Accordingly, body representation
in the SNN facilitated brain-body interaction and accelerated the
acquisition of babbling behavior.

Index Terms—brain-body interaction, canonical babbling, in-
trinsic plasticity, spiking neural network, spike-timing-dependent
plasticity

I. INTRODUCTION

Brain-body interactions guide the development of behav-
ioral and cognitive functions. Sensory signals arising from the
body evoke neural activity that in turn alters the connectivity of
neural networks through activity-dependent plasticity [1]. The
activity of the organized neural networks then drives physical
behavior by feeding sensory signals into neural networks. This
form of interaction has attracted attention in developmental
science [2] given the high plasticity and rapid growth of the
infant brain [3], [4]. Yet, a computational mechanism permit-
ting this interaction, especially if dynamics of the intrinsic
neural spikes is different from the body movement in terms of
their timescales, remains unclear. In addition to the scientific
motivation for this study, reward-based skill learning in this
context is also of interest for application to artificial systems.

Although the most existing studies in computational neu-
roscience have not considered embodiment, various studies
have examined brain-body interactions. Yamada et al. [5]
constructed a realistic fetal simulator consisting of a spik-
ing neural network (SNN), skeletal muscles, and intrauterine
environment, and found that body representation emerged

in the SNN if somatosensory signals were fed into a SNN
with neural plasticity. Body representation was defined as an
increase in the number of neurons exhibiting significantly
higher activation during movement of a specific body part
versus other body parts. Yet, the model did not investigate
the effect of body representation on behavior because the
organized SNN did not drive the body. In contrast, Warlaumont
and Finnegan [6] proposed a model where output from a SNN
supplied motor commands to a vocal simulator. Modulation
of the synaptic weights of output neurons based on reward
for vocalized sounds allowed the model to learn infant-like
vocalization; however, this model did not include an auditory
sensor or self-organization in the SNN. Recently, Park et al. [7]
reported that behavior patterns can emerge as the result of an
interaction between motor commands from a neural oscillator
network and sensory signals from a musculoskeletal system,
but this model did not consider neural plasticity or learning.

Our previous study showed that self-organization of the
SNN in accordance with a spiking-timing-dependent plasticity
(STDP) rule promoted the reward learning of vocalization [8].
This study emphasized the necessity of auditory feedback to
the SNN for efficient reward learning. We speculated that
STDP under auditory feedback enabled specific SNN activities
to represent articulatory movements, which ultimately accel-
erated reward learning about weights between the SNN and
a vocal simulator. Yet, our previous study did not inform the
role of body representation in reward learning.

In the present study, we investigated the relationship be-
tween body representation in the SNN and reward learning
performance. Self-vocalized sounds were fed into a SNN
organized in accordance with STDP. The activities of some
neurons in the SNN were converted to motor commands to
drive a vocal simulator and output weights were modulated
based on a reward for the vocalized sound. A key problem in
this context is the difference between neural activity and bod-
ily movements, especially in their timescales; neural spiking
activity fluctuates quickly while speech articulator movements
are relatively slow. If the SNN activates independently of
movement, reward learning becomes difficult. Therefore, it
is desirable that activity of the SNN is temporally related
to movement. We hypothesized that STDP under auditory
feedback would enable the SNN to represent task-related
articulation and lead to efficient reward learning. We expected
that auditory feedback would bias activity of the SNN towards



articulator movements because auditory signals should reflect
the movements. This activity pattern derived from auditory
feedback may be consolidated by STDP (see [9]). We exam-
ined this hypothesis by analyzing the learning performance
and neural dynamics of the SNN in the babbling acquisition
task. Existing studies have reported that reward based on
sound saliency, i.e., the temporal variation in the frequency
spectrum of the vocalized sounds, enables a learning model to
acquire infant-like canonical babbling (a rhythmical series of
consonants and vowels) [6], [8].

II. MODEL

A. Spiking neural network

Fig. 1 shows an overview of our model. The left large circle
indicates the SNN consisting of 1000 Izhikevich-type spiking
neurons [10]. The membrane potential vi of the ith neuron is
described as

v̇i = 0.04v2i + 5vi + 140− ui + I, (1)
u̇i = a(bvi − ui) +Dξi, (2)

if vi ≥ 30mV, then

{
v ← c,

u← u+ d,
(3)

where ui denotes the membrane recovery variable, and a, b,
c, and d are parameters. I denotes a total input current, e.g.,
synaptic current through other neurons and external input.
In Eq. (2), ξ is the Gaussian noise with a mean of 0 and
intensity D [11]. Eq. (3) describes the after-spiking resetting.
Eight hundred neurons were excitatory and 200 are inhibitory
(shown as red and blue circles in Fig. 1, respectively). Neuron
parameters were in accordance with the existing model [11].
Each neuron had 100 randomly selected synaptic connections.
Weight was initially sampled from the uniform distribution in
the range of 0–6 and then modulated based on plasticity rules.

We employed two plasticity rules in this model: STDP
[9] and intrinsic plasticity (IP) [11]. Synaptic weights of all
excitatory neurons in the SNN were updated in accordance
with STDP. This rule strengthens or weakens a connection
between 2 neurons based on the time difference between their
spikes. The amount of update of a synaptic weight ∆w was
calculated as

∆w =

{
A+e

−∆t/τ+ if ∆t > 0,

−A−e
∆t/τ− if ∆t ≤ 0,

(4)

∆t = tpost − tpre, (5)

where A denotes the amplitude of the amount of update and
τ denotes the decay constant. ∆t represents the difference
between spike timings of the pre- and post-synaptic neurons
(tpre and tpost, respectively). In Eq. (4), the cases of t > 0
and t ≤ 0 indicate long-term potentiation and long-term
depression, respectively. It is expected that this plasticity
allows activity of the SNN to represent the temporal patterns
of input signals [9].

The IP rule sustains the firing rate of a neuron at an adequate
level. Standard SNN requires random inputs for sustained

Fig. 1. An overview of the model of reward learning for babbling acquisition
based on the self-organized spiking neural network (SNN). This model mainly
consists of the SNN, an output layer, and a vocal simulator. The SNN
and reward learning are models of the sensorimotor cortex and striatum,
respectively (see [12]). Some neurons in the SNN connect to neurons in
the output layer, and activity of the output layer yields motor commands
for the vocal simulator. The vocalized sounds are converted into frequency
information (auditory signals) and are fed into the SNN. Synaptic weights
from the SNN to the output layer are modulated based on reward in accordance
with sound saliency. Activity-dependent plasticity in the SNN is thought to
enables activity of the SNN to represent the movements of articulators, leading
to efficient reward learning. DA, dopamine-modulated; STDP, spike-timing-
dependent plasticity.

activity as in our previous model [8]; however, random inputs
can obscure sensory inputs and ultimately prevent the SNN
from representing body movements. Therefore, we applied
this homeostatic plasticity to all neurons in the SNN to assist
their spontaneous activity without random inputs. This rule
modulated the parameter b in Eq. (2), which is related to
the sensitivity of action potential recovery if the inter-spike
interval (ISIi), i.e., the time difference between consecutive
spikes of the ith neuron was outside the allowable range
(Tmin, Tmax) [11]. The amount of update of the parameter
∆bi of the ith neurons is given as

∆bi =


−ηbmax exp

(
Tmin − ISIi

Tmin

)
if ISIi < Tmin,

ηbmax exp

(
Tmax − ISIi

Tmax

)
if ISIi > Tmax,

0 otherwise,

(6)

ISIki = tk+1
i − tki , (7)

where η is a constant, bmax is the maximum value of b, and
Eq. (7) represents an ISI between the kth and (k+1)th spikes
of the ith neuron. The parameters for these plasticity rules
were in accordance with the model described by [11].

B. Vocalization and reward learning

One hundred randomly selected excitatory neurons in the
SNN were assumed to be output neurons, each of which
connected to 40 neurons in the output layer. The output layer
had 50 excitatory agonist neurons and 50 excitatory antagonist
neurons (orange and light blue circles in Fig. 1, respectively).



The history of difference between firing of these agonist
and antagonist neurons (Sago(t) and Sant(t), respectively)
produced a motor command m(t) at time t ms:

Sdif(t) = Sago(t)− Sant(t), (8)

m(t) = α

100∑
i=0

{
Sdif(t− i)

(
1− exp

(
i− 100

τout

))}
,(9)

where α = 0.05 and τout = 20 ms denoting the motor gain
and decay constant, respectively. This 1-dimensional motor
command drove the masseter and orbicular oris muscles,
which are related to the jaw closure and lip closure of the
vocal simulator Praat [13].

The vocalized sound was converted to a frequency spectrum
discretized into 100 frequency bands (1–20 Hz, 21–40 Hz,
· · · , 1981–2000Hz). The ith current input to the SNN Ii was
proportionate to the frequency power of the ith band.

Ii = βEi, i = 1, 2, · · · , 100, (10)

where input gain β was 13. Each Ii was fed into 2 randomly
selected neurons in the SNN. This correspondence between
frequency bands and neurons was fixed through learning, such
that 200 neurons consistently receive auditory feedback. These
processes were conducted every 1 ms.

Synaptic weights from the SNN to the output layer were
updated by the dopamine-modulated STDP (DA-STDP) [14].
This applied STDP to the weights only in response to a reward.
DA-STDP thereby enabled the output layer to produce firing
patterns that satisfied the condition for a reward. A reward
was given when saliency of the vocalized sound exceeded
a threshold. Sound saliency was calculated as the averaged
temporal variation of the time-series of the frequency spectrum
[15]. Vocalized sounds including consonants and vowels in
canonical babbling have high saliency. Our model evaluated
saliency every 1,000 ms. Vocalized sound for the first 250 ms
was discarded to account for the preparation of lung pressure.
Thus, saliency evaluation was performed on sound produced
in the latter 750 ms. An initial threshold was set to 4.5 and
increased by 0.1 when saliency exceeded the threshold in 3
of 10 preceding trials or decreased by 0.1 when none of the
preceding 10 trials exceeded the threshold.

III. EXPERIMENTAL SETTINGS

A. Model conditions

We designed 3 feedback conditions to investigate the effect
of auditory feedback:

(a) Auditory feedback: Auditory signals representing self-
vocalized sound were fed back into the SNN as de-
scribed above.

(b) Surrogate feedback: Auditory signals produced in an-
other trial were provided as feedback into the SNN. This
feedback was not consistent with the motor commands.

(c) Without feedback: No auditory signals were fed into the
SNN.

We furthermore simulated a model that did not apply STDP
in order to elucidate the effect of the STDP. Therefore, we

tested 6 conditions, i.e., 3 feedback conditions with and
without STDP. The simulation time for each trial was 2000
s, and the results from each model condition were averaged
from 10 runs.

B. Network analysis

Model were run for 200 s after each trial of 2000 s in order
to analyze network structure and dynamics. Synaptic weights
and neural parameters were fixed in this additional simulation.
The first 100 s was discarded due to a transient state, such that
the analysis was conducted on the latter 100 s.

We evaluated the complexity of neural dynamics in the SNN
using a principle component analysis (PCA). The PCA reduced
the dimensions of the time-series of firing for 1000 neurons
over 100 s (1000 dimensions). We counted the number of
principle components with an accumulated contribution rate
of 0.8 to assess the number of linear spaces required for
the explanation of the original time-series. This value also
suggested the degree of complexity of the neural dynamics.

We analyzed individual neural behaviors in terms of articu-
latory movements, i.e., motor commands m(t), using statistical
t tests. We counted the number of neurons that exhibited
statistically higher firing rates during a specific movement
versus other movements. This analysis is a standard approach
for identifying body representation in neural activity (e.g.,
[5], [16]). The value of the motor commands was between
1 and −1. Higher values represented pursing of the lips for
the pronunciation of a consonant and lower values represented
pronunciation of a vowel. We segmented simulation periods
into 3 parts: consonant periods (m(t) ≥ 0.5), vowel periods
(m(t) ≤ −0.5), and other periods (−0.5 < m(t) < 0.5). The
neural representation was evaluated for each period.

Neural activity in the output layer is a main contributor to
learning performance because it generates motor commands.
We evaluated the averaged firing rates of agonist and an-
tagonist neurons to explore their relationships with learning
performance.

IV. RESULTS

A. Learning performance

Fig. 2 shows model learning over time with the value of
sound saliency denoted on the vertical axis. The red, blue, and
gray curves indicate cases with STDP while the green, yellow,
and purple curves indicate cases without STDP. The auditory
feedback with STDP condition (red curve) was associated with
the most rapid learning, whereas saliency increased gradually
in the surrogate feedback and without feedback conditions. In
contrast, cases without STDP failed to exhibit learning. This
result suggested that STDP was necessary for learning and that
learning was accelerated by auditory feedback.

Figs. 3 (a) and (b) show example spectrograms of the
vocalized sounds before and after learning in the auditory
feedback plus STDP condition. Initially, the simulator only
pronounced a flat sound, i.e., a vowel. After learning, temporal
variations appeared in the sound frequency, indicating the
pronunciation of consonants.



Fig. 2. Learning curves for the saliency of the vocalized sounds over time.
The curves indicate generalized additive model fits and the error bars indicate
95% confidence intervals. STDP, spike-timing-dependent plasticity.

B. Weight distribution and complexity of neural activity

We analyzed synaptic weights and neural dynamics to
identify how STDP enabled the model to learn babbling.
Fig. 4 shows histograms of synaptic weights before and
after STDP in the auditory feedback condition. Although the
initial weights (gray histogram) had a uniform distribution,
the weights after learning (red histogram) exhibited all-or-none
extremes. STDP appeared to trim unnecessary connections and
enhance connections between causally related neurons. This
tendency was also observed in the surrogate feedback with
STDP and without feedback with STDP conditions.

Fig. 5 shows the number of principle components in neural
dynamics. The colors correspond to those in Fig. 2. Cases with
STDP (red, blue, and gray bars) exhibited higher complexity
than those without STDP (green, yellow, and purple bars).
Therefore, STDP provided the SNN with more complex dy-
namics, possibly improving the learning ability of the SNN.
Yet, complexity alone cannot explain the acceleration of re-
ward learning in case of auditory feedback, as little difference
was seen between the values of complexity in the auditory
feedback and surrogate feedback conditions.

C. Articulatory representation

Fig. 6 shows the numbers of neurons that were more
significantly activated during vocalization of a consonant,
vowel, or others (yellow, blue, and gray bars, respectively)
in cases with STDP. There were more neurons representing
consonants in the auditory feedback condition compared to
the surrogate and without feedback conditions. In contrast, the
surrogate and without feedback conditions had more neurons
representing vowels and others. Larger sound saliency requires
more pronunciation of a consonant. Therefore, a higher num-

(a) Before learning

(b) After learning

Fig. 3. Spectrograms of vocalized sounds before learning (a) and after
learning (b). The color indicates the frequency power.

ber of neurons representing consonants enabled the SNN to
efficiently learn babbling.

D. Neural activity in the output layer

Fig. 7 shows the averaged firing rates of agonist and antago-
nist neurons in the output layer in cases with STDP. The firing
rate was slightly smaller in the auditory feedback condition
compared to the surrogate feedback and without feedback
conditions. This suggested that the model exhibited high
learning performance at lower activity cost in the output layer.
Furthermore, the activity of agonist neurons was higher than
that of antagonist neurons in the auditory feedback condition.
The activity of agonist neurons produce lip-pursing behavior,
i.e., pronunciation of a consonant. We hypothesize that reward
learning based on the neural activity representing a consonant
(Fig 6) enabled the model to produce consonants without the
need for high activity in the output layer. In contrast, the SNNs
in the surrogate feedback and without feedback conditions had
complex dynamics representing vowels and others that were
not related to the task. Therefore, it took a longer to extract
task-related dynamics from all dynamics in the SNN.

V. DISCUSSION

In the present study, we proposed a reward learning model
for canonical babbling based on a SNN that is fed audi-



Fig. 4. Histograms of synaptic weights before and after spiking-timing-
dependent plasticity (STDP) (gray and red bars, respectively).

Fig. 5. Complexity of neural dynamics. Values indicate the number of
principle components of neural dynamics with accumulated contributions of
≥ 0.8. Bar olors correspond to those in Fig. 2. Error bars indicate the standard
deviation.

tory feedback and organized with STDP and IP rules. Our
experiment demonstrated that self-organization of the SNN
through brain-body interaction promoted reward learning (see
Fig. 2). We identified 2 important factors for the acceleration
of learning: “complexity” and “representation”. Complexity
is required for rapid adaptation to novel and diverse tasks or
input while representation is utilized to respond to known tasks
and inputs. STDP increases the complexity of neural dynamics
(see Fig. 5) and makes the SNN sparser because it strengthens
connections between related neurons and weakens unnecessary
connections (see Fig. 4). The activity of sparse networks is

Fig. 6. The number of neurons showing a significantly higher degree of
activates during vocalization of a consonant, vowel, or others. Error bars
indicate the standard deviation.

Fig. 7. Averaged firing rates of agonist and antagonist neurons as yellow
and blue bars, respectively. Error bars indicate the standard deviation.

generally more complex than that of dense networks [17], [18].
Many studies have shown that STDP improves the learning
performance of neural networks (e.g., [19], [20]). We suppose
that our model learned to extract task-related dynamics, i.e.,
pronunciation of consonants, from complex neural dynamics
that included diverse patterns. In contrast, Lazer et al. [21]
reported that STDP reduced the complexity of activity in
binary neural networks. Therefore, the relationship between
complexity and STDP might be unique to the SNN.

The second factor, representation, relates to the acquisition
of task-related dynamics in the SNN via STDP under auditory
feedback (see Fig. 6). We observed an increase in the number
of neurons that were highly activated during pronunciation of
consonants in the auditory feedback condition. This finding
suggests that neural dynamics in the SNN adapted to mimic
patterns representing articulatory behavior. Park et al. [7] also
showed that somatosensory feedback led to adaption of the



dynamics of a neural oscillator network to bodily movements.
This adaptive brain-body interaction consequently produced
diverse movement patterns [7]. Our study showed that utilizing
such neural dynamics including body representation acceler-
ates reward learning. Interestingly, body representation was
not formed in the case of surrogate feedback when auditory
signals were not consistent with motor commands. It can be
speculated that activity generating motor commands and ac-
tivity reflecting auditory signals enhanced the effect of STDP
because they shared the same patterns of body movements.
Furthermore, body representation enabled the model to learn
babbling with lower neuronal activity in the output layer
(see Fig. 7). High learning performance with less activity is
advantageous in terms of metabolism and energy conservation.

Activity in the sensorimotor cortex of the adult brain
represents the movements of speech-articulators and the vo-
calization of consonants and vowels [16]. Accordingly, some
neurons are selectively activated during specific movements
and vocalizations [16]. Our findings indicate that this body
representation is acquired by the self-organization of cortical
networks through brain-body interactions. If this interaction
failed because of an auditory defect, e.g., in the without
feedback condition, the acquisition of babbling behavior was
delayed. In fact, the onset of canonical babbling is delayed in
infants with hearing loss [22], [23].

VI. CONCLUSION

We investigated how a plastic brain network and body
interacted and developed using a simple embodied SNN.
SNN output actuated the muscles of a vocal simulator and
the vocalized sounds were fed back into the SNN. Synaptic
connections in the SNN were organized via STDP. The con-
nections from the SNN to the vocal simulator were modulated
via DA-STDP based on sound saliency, i.e., reward learning to
produce canonical babbling. Our simulation showed that STDP
under auditory feedback enabled SNN dynamics to represent
articulatory movements. Such articulatory representation in the
SNN produced motor commands with precise articulation and
accordingly feedback represented the improved sound. Ulti-
mately, this brain-body interaction accelerated reward learning
for babbling acquisition. Additionally, we found that STDP
yielded sparse SNN connectivity, which may have increased
the complexity of its activity. These complex dynamics also
seemed to contribute to reward learning. Therefore, the repre-
sentation of bodily behaviors in complex dynamics of neural
activity realized efficient behavioral reward leaning. These
results demonstrated the potential of the SNN as an artificial
system that can promptly adapt to diverse tasks and environ-
ments. We plan to impose a novel task on our model after
learning to investigate its adaptability.
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