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Abstract—The question of how the mirror neuron system
(MNS) develops has attracted increased attention of researchers.
Among various hypotheses, a widely accepted model is associative
sequence learning, which acquires the MNS as a by-product of
sensorimotor learning. The model, however, cannot discriminate
self from others since it adopts too much simplified sensory
representations. We propose a computational model for early
development of the MNS, which is originated in immature vision.
The model gradually increases the spatiotemporal resolution of
a robot’s vision while the robot learns sensorimotor mapping
through primal interactions with others. In the early stage
of development, the robot interprets all observed actions as
equivalent due to a lower resolution, and thus associates the
non-differentiated observation with motor commands. As vision
develops, the robot starts discriminating actions generated by
self from those by others. The initially acquired association
is, however, maintained through development, which results in
two types of associations: one is between motor commands and
self-observation and the other between motor commands and
other-observation (i.e., what the MNS does). Our experiments
demonstrate that the model achieves early development of the
MNS, which enables a robot to imitate others’ actions.

I. INTRODUCTION

The mirror neuron system (MNS) discharges both when
executing a specific action and when observing the same
action by other individuals [1], [2]. Many researchers in
neuroscience, developmental psychology, and even robotics
have been investigating properties of the MNS, e.g., how
it represents self-other correspondence and how it leads to
social behaviors. Notable findings are the ability to understand
others’ actions (e.g., [3], [4]) and imitation (e.g., [5], [6]).
However, despite many findings, the origin of the MNS
remains a mystery.

The question of whether the MNS is nature or nurture is
still controversial. We support a hypothesis that the MNS
develops by postnatal learning since human ability to imitate
varies depending on experiences [7]. Heyes and colleagues
[7], [8] proposed an associative sequence learning (ASL)
model, which hypothesizes that infants acquire the MNS as
a by-product of sensorimotor learning. The model consists
of sensory representations and motor ones, which are weakly
and unsystematically connected before learning. Infants are
supposed to learn the sensorimotor mapping using the Hebb’s
rule. An important assumption here is that infants are often
imitated by others, especially by caregivers, which enables

Fig. 1. Human-robot interaction for development of the MNS

infants to detect correspondence between self and other. Many
researchers have suggested that experiences of being imitated
is crucial in the development of the MNS [7]–[10]. The ASL
model, however, cannot determine whether an observed action
is produced by self or other. Too much simplified sensory
representations prevent the model from detecting temporal
delay in other’s actions, different perspective between self and
other, and so on, which are important in discriminating self
from others.

Neither previous computational models of the MNS nor
those of imitation take self-other discrimination into account.
Kuniyoshi et al. [11] showed that equivalence between optical
flows detected from motion of self and those of other serves
as the ability of imitation. Sensorimotor learning only through
observation of self enabled their robot to “imitate” equivalent
other’s actions. Chaminade et al. [12] also employed the idea
of equivalence. Their robotic hand “imitated” the posture
of other’s hand based on close similarity between visual
appearance of self and other. In contrast, the models proposed
by Asada et al. [13] and Minato et al. [14] differentiate
self from others. Their models make a robot/an infant model
first observe motions of self and other separately, map the
observed motions into different perceptual spaces, and then
associate them with self-motor commands. However, a remain-
ing question is how a robot/an infant model can determine
which observed motion is self or other. Such differentiation



Fig. 2. An infant learns sensorimotor mapping through interactions with a
caregiver, which produces the MNS as a by-product of associative learning.

is necessary for further social development such as contingent
interaction and turn taking. It has even been suggested that
infants are born with a vague or no border between self and
others [15]. A developmental model of the MNS has to explain
how infants acquire self-other correspondence while learning
to differentiate self from others.

We propose a computational model for early development of
the MNS originated in immature vision. A robot is supposed to
learn sensorimotor mapping through primal interactions with
others (see Fig. 1). Meanwhile, the robot’s vision develops as
it gains more experiences. In the early stage of development,
the robot observes motions of self and those of other only
in a lower spatiotemporal resolution. Such immature vision
prevents the robot from detecting differences between self and
other (e.g., different length of delay in actions and different
appearances of them), and thus makes the robot associate
between non-differentiated observations and motor commands.
Of importance here is that the non-differentiated perception
leads to correspondence between self and other in the latter
stage of development. As vision develops, the robot starts
discriminating self from other while maintaining the initially-
acquired association, that is, the mapping both between self-
motions and motor commands and between other-motions
and motor ones (i.e., what the MNS does). Our model thus
enables a robot to acquire both self-other correspondence and
discrimination simultaneously through visual development.

The rest of this paper is organized as follows: Section II
defines the issue we address and assumptions. Our proposed
model for emergence of the MNS is described in Section III.
Section IV then demonstrates how the model enables a robot to
acquire the MNS and to imitate others’ actions. Experimental
results are discussed in Section V with concluding remarks.

II. PROBLEM SETTING AND ASSUMPTIONS

We assume a face-to-face interaction between an infant (or
a robot) and a caregiver as shown in Fig. 2. The infant learns
association between self-motor commands and observed body
motions under the following assumptions:

1) Both the infant and the caregiver have the same reper-
toire of motions (hand gestures in our experiment) and

(a) Early stage of development (b) Latter stage of development

Fig. 3. A model for emergence of the MNS originated in immature
vision. In the early stage of development (a), motor commands are roughly
associated with visual clusters, which do not yet discriminate self from others.
In the latter stage (b), clusters become differentiated while maintaining the
association with the same motor commands (i.e., the MNS).

execute them one by one during sensorimotor learning.
2) The infant only uses visual perception in the current

experiment. The hand gestures of the infant and the
caregiver are detected as optical flows.

3) The infant has his own perspective and limited view, that
is, he can see only his arms while observing the whole
upper body of the caregiver.

4) The caregiver responds to the infant’s motions with some
delay. Her responding gestures are sometimes the copy
of the infant’s ones.

Under these assumptions, we address two issues related to
the MNS: The first one is self-other differentiation. The infant
learns to discriminate self from others by detecting differences
in observed motions. Differences are, for example, caused by
the infant’s specific perspective (the 3rd assumption) and the
temporal delay in the caregiver’s motions (the 4th). The second
issue concerns self-other correspondence. The infant learns
to associate between self-motor commands and corresponding
caregiver’s motions as well as between motor commands and
observed self’s motions.

III. A MODEL FOR EMERGENCE OF MNS

A. Basic idea

Fig. 3 illustrates the proposed model for emergence of
the MNS: (a) the early stage and (b) the latter stage of
development. The model consists of two layers: The upper
layer is the visual space V , which maps optical flows detected
from an infant’s vision. The red and the blue arrows denote
the motion of self and other, respectively. The lower layer is
the motor space M , which contains the repertoire of motor
commands.



(a) Immature vision with 1 spatial, 4
directional, and 1 temporal samplings

(b) Matured vision with 9 spatial, 18
directional, and 4 temporal samplings

Fig. 4. Mechanism of visual development. Out of three developmental stages,
the first (a) and last stages (b) are depicted.

An infant learns visuomotor mapping while he develops
visual perception. In the early stage of development (see
Fig. 3 (a)), the infant perceives optical flows only in a lower
spatiotemporal resolution. Thus, the infant recognizes the
caregiver’s motions as equivalent to the corresponding self-
motions, which forms non-discriminated clusters in V (i.e.,
purple ellipses). The non-discriminated clusters then establish
rough association with motor commands in M by Hebbian
learning. In the latter stage of development (see Fig. 3 (b)), the
infant comes to perceive visual inputs with a higher resolution.
Clusters of self-motions and other-motions gradually become
discriminated (i.e., red ellipses and blue ones, respectively).
Of importance here is that the initially-acquired association
is maintained through development. The mapping that each
motor command had with a non-differentiated cluster is now
established both with self-motion and other-motion. That is,
the properties of the MNS (i.e., self-other differentiation and
correspondence) are acquired through associative learning.

The following sections describe the mechanism of visual
development (Section III-B), the method for clustering visual
inputs and associative learning (III-C), and that of imitation
after learning (III-D).

B. Mechanism of visual development

We replicate infants’ visual development by changing the
spatiotemporal resolution of a robot’s vision. Fig. 4 illustrates
how to code optical flows detected from motions of self and
other. Out of three developmental stages, the first (a) and
last stages (b) are depicted here. There are three types of
resolutions to develop:

1) Spatial resolution: The first one concerns receptive fields
denoted by white circles in Fig. 4 (b). The number of receptive
fields increases as vision develops: It starts with 1 receptive
field covering a whole image (see Fig. 4 (a)), changes into
4 fields dividing an image into 2 × 2, and ends with 9
fields dividing into 3 × 3 (see Fig. 4 (b)). Optical flows
detected in a robot’s vision are accumulated and then coded
as a histogram in each receptive field. The mechanism of
employing histograms except the developmental process was
inspired by [11], [16].

2) Directional resolution: The second one is directional
resolution to discretize optical flows (see red arrows in Figs. 4

(a) Optical flows coded with immature vision. No significant
difference between self and other is observed due to a lower
spatiotemporal resolution.

(b) Optical flows coded with matured vision. Differences between
self and other become visible due to a higher resolution.

Fig. 5. Sample images showing optical flows detected from self-motion (left)
and other-motion (right). The developmental stages of (a) and (b) correspond
to those in Figs. 4 (a) and (b), respectively.

(a) and (b)). A robot starts only with 4 directional samplings,
that is, optical flows are discretized every 90 deg as shown in
Fig. 4 (a). The number of samplings then increases to 8 (i.e.,
every 45 deg) and finally to 18 (i.e., every 20 deg as shown
in Fig. 4 (b)) as vision develops.

3) Temporal resolution: The third one is temporal resolu-
tion, which defines the length of a time window to accumulate
optical flows (see “}” at the upper-right in Figs. 4 (a) and (b)).
A robot first has only a single longer temporal window, which
corresponds to the duration of a single gesture (see Fig. 4 (a)).
The temporal resolution then increases to 2 and finally to 4 as
shown in Fig. 4 (b), which gradually enables a robot to detect
temporal delay in other’s actions.

Let Ns, Nd, and Nt be the number of spatial, directional,
and temporal samplings, respectively. Visual inputs v are
defined by:

v =
[[

h1,1 . . . hNs,1

]
. . .
[

h1,Nt . . . hNs,Nt

]]T
(1)

where h =
[

v1 . . . vNd

]T (2)

h is the histogram detected in each receptive field, and v is the
length of each flow vector with a directional selectivity. The
number of dimensions of v thus increases as vision develops
(i.e., 4 = 1 × 4 × 1 in the first stage, 64 = 4 × 8 × 2 in the
second, and 648 = 9 × 18 × 4 in the last). All the three types
of development are simultaneously triggered by increases in
visual experiences.

Fig. 5 gives sample images (a) with immature vision and (b)
with matured vision. The left and right images show optical
flows detected when a robot was observing the motion of
its own hand (the robot’s left hand appears at the left lower



corner of the image) and the motion of other, respectively.
Both the robot and the person were moving its/his hand up
and down. With immature vision (see Fig. 5 (a)), the robot
does not detect significant difference between self and other
due to a lower spatiotemporal resolution. In contrast, the robot
with matured vision (see Fig. 5 (b)) detects differences in the
spatial and directional properties of optical flows. Difference
in the temporal delay is another crucial cue in discriminating
self from other though it is not shown in Fig. 5 (b).

C. Clustering of visual inputs and sensorimotor learning

Visual inputs v are clustered in the visual space V (the
upper layer in Fig. 3). We apply X-means algorithm [17] using
Bhattacharyya distance because the algorithm can automati-
cally determine an appropriate number of clusters. The process
of increasing clusters shows how self and other are gradually
discriminated. Refer to [17] for the detailed mechanism.

Our model then learns association between visual clusters
and motor commands. We apply a modified Hebbian rule,
which connects an activated motor command not only with
the most excited visual cluster, which contains the current
visual input, but also with its neighbors depending on the
distance. Clusters which are too far from the activated one
are inhibited to facilitate learning. Let vi (i = 1, 2, · · · , Nv)
and mj (j = 1, 2, · · · , Nm) be the prototype vectors of visual
clusters and motor commands, respectively. The connecting
weights wi,j between vi and mj are updated by:

wi,j(t + 1) = wi,j(t) + α(vi) · β(mj), (3)

where α(vi) and β(mj) are the activities of vi and mj

calculated by:

α(vi) = a exp
(
−aπdb(vfire,vi)2

)
−(a − 1) exp

(
−(a − 1)πdb(vfire,vi)2

)
(4)

β(mj) =
{

1 if mj is executed
0 else. (5)

vfire is the most excited visual cluster, a is the parameter to
determine the sharpness of a Gaussian function, and db(x,y)
is Bhattacharyya distance between x and y. α(vi) thus works
as a DOG (difference of two Gaussians) filter to represent
lateral inhibition of Hebbian learning.

Note that visual clustering and sensorimotor learning are
conducted iteratively. Visual clusters gradually separate as the
model increases spatiotemporal resolution and/or gains more
visual experiences. If the i-th cluster is divided into the i1-th
and i2-th clusters, the connecting weight with the j-th motor
command is copied by:

wi1,j(t) = wi2,j(t) = wi,j(t), (6)

so that the model maintains self-other correspondence acquired
with immature vision.

D. Imitation after sensorimotor learning

The acquired sensorimotor mapping can be used for imitat-
ing other’s actions. Let vo be a new visual input when a robot

observes other’s motion. The motor command m to execute
is calculated by:

m =
∑

j

((
β′(mj)/

∑
k

β′(mk)

)
· mj

)
, (7)

where β′(mj) is the activity of the j-th motor command
determined by:

β′(mj) =
∑

i

wi,j

{
a exp

(
−aπdb(vo,vi)2

)
−(a − 1) exp

(
−(a − 1)πdb(vo,vi)2

)}
. (8)

That is, the robot imitates other’s motions by integrating motor
commands with a weight proportional to their activity. This
mechanism thus enables interpolation of novel actions.

IV. EXPERIMENTS

A. Experimental setting

We evaluated the proposed model using an infant-like
humanoid robot as shown in Fig. 1. The robot, called M3-
Neony [18], has 22 degrees of freedoms (DoFs) and two
CMOS USB cameras (640 × 480 pixels) embedded in the
eyes. It was equipped with six types of hand gestures: waving
the right hand, the left hand, or the both hands vertically or
horizontally using 6 DoFs in its arms. An experimenter, who
had the same repertoire of gestures, responded to the robot’s
actions with 30% of imitation and 70% of randomly-selected
gestures. The responding gestures always had 2 to 3 seconds
of delay from the robot’s ones.

Learning experiments were conducted off-line. The robot
simulated interactions by iteratively using 120 visual data
obtained beforehand. The three-staged visual development
was triggered when the robot received first 70 types of data
(from the first to second stages) and then 105 data (from the
second to third). These numbers as well as the parameter a in
Eqs. (4) and (8), which was set at 20, were determined from
preliminary experiments.

B. Self-other differentiation through visual development

Fig. 6 depicts the gradual separation of clusters for self-
and other-motion in (a) the first stage, (b) the second stage,
and (c) the last stage of development. We applied principal
component analysis just to visualize clusters. Red points and
blue ones denote an individual visual input corresponding
to motion of self and other, respectively, which the robot
did not know before associative learning. Ellipsoids enclosing
the points indicate clusters the robot acquired through visual
development (self-motion in red, other in blue, and non-
discriminated in purple).

In the early stage of development, most of the clusters
contained both self- and other-motions as shown in Fig. 6 (a).
The robot could not differentiate between self and other due
to a lower visual resolution. Once the resolution improved,
the robot started differentiating self from other. Some of the
clusters in Fig. 6 (b) already contained either self- or other-
motions, and finally, the robot achieved clear separation in



(a) First stage of development (b) Second stage of development

(c) Last stage of development

Fig. 6. Discrimination between self and other through visual development.
Non-discriminated clusters (purple ellipses) in (a) gradually split into clusters
for self (red ellipses) and other (blue ones) in (b) and then in (c).

Fig. 6 (c). This result further indicates that the robot can
recognize whether a novel motions are generated by self or
other. The vertical axis in Fig. 6 (c) clearly separates clusters
for motions produced by self (the lower side) from those
by other (the upper side). The visual mechanism to detect
different appearance of other’s motions and their temporal
delay enabled the robot to clearly discriminate self from other.

C. Self-other correspondence originated in immature vision

The second experiment examined the role of visual devel-
opment in learning self-other correspondence. Fig. 7 shows
the connecting weights between self-motor commands and
observed motions acquired (a) with visual development and
(b) without development (i.e., the robot used only visual inputs
with a higher resolution over learning). The rows correspond
to the clusters of observed motions (self-motions in the upper
side and other-motions in the lower side) whereas the columns
motor commands. The small arrows on the left and on the top
indicate the corresponding gestures. For example, the leftmost
column shows the vertical movement of the right hand, the
second leftmost the left hand, and so on.

First, both results in Figs. 7 (a) and (b) indicate that
the correspondence between motor commands and observed
motions produced by self are acquired regardless of visual
development. The stronger weights from the top-left corner
to the middle-right show proper association between them.
It is obvious to acquire such association because the robot’s
motions were highly contingent. In contrast, the association
between motor commands and motions of other presents a big
difference. Only the model with visual development shown in

(a) Learning with visual development (b) Learning without development

Fig. 7. Sensorimotor mapping acquired through associative learning (a) with
or (b) without visual development. Only (a) acquired self-other correspondence
depicted as the stronger weights in the lower diagonal area of the map.

Fig. 7 (a) acquired self-other correspondence (i.e., the stronger
weights in the lower diagonal area). Associative learning
during the early stage of visual development contributed to
the acquisition of correspondence between self and other.

D. Imitation using acquired sensorimotor mapping

We assessed the robot’s ability to imitate other’s actions
using the acquired self-other correspondence. Figs. 8 (a) and
(b) plot the trajectories of the experimenter’s right hand and the
robot’s left hand imitating the experimenter, respectively. The
brown lines and the green ones are the horizontal and vertical
positions of their hand in the image. The experimenter was
moving both arms first up and down and suddenly switched
to left and right. Camera images captured during each motion
are shown under the graph.

The result demonstrates qualitatively successful imitation by
the robot. The robot properly selected the arms to move (i.e.,
the both arms) and the motion direction (i.e., first vertically
and then horizontally). The delay in the robot’s motion was
caused by accumulating optical flows so that the robot could
strongly enough activate the corresponding motor command.
The gradual shift in motion direction also shows the effect
of accumulation and the way of generating motor commands
using Eqs. (7) and (8). Integrating motor commands with
a weight proportional to their activity enabled the robot to
interpolate the two different motions.

V. DISCUSSION AND CONCLUSION

How the MNS develops is still an open question. We have
addressed this issue by extending the hypothesis of associative
learning. Our key idea is that immature perception leads to
emergence of the MNS. Visual perception with a lower spa-
tiotemporal resolution makes infants/robots recognize motions
produced by other as equivalent to those by self. Immature
perception plays an important role in detecting correspondence
between self and other. The experimental results showed that
our model acquired the abilities of self-other discrimination as
well as correspondence and enabled a robot to imitate other’s
actions using the MNS.



(a) Motion trajectory of an experimenter’s hands

(b) Trajectory of imitative response by the robot

Fig. 8. Imitation of an experimenter’s hand movement using the acquired
sensorimotor mapping. The brown and the green lines indicate the horizontal
and vertical position of the experimenter’s right hand (in (a)) and the
robot’s left hand (in (b)), respectively. The robot successfully imitated the
experimenter’s motion in terms of the hands used in the gesture and the
motion directions.

There are behavioral and neuronal evidences which support
our mechanism of visual development: Atkinson et al. [19] and
Wilson et al. [20] suggest that the response characteristics of
receptive fields change from a low pass to a band pass type
during infancy. Infants gradually come to receive a sharper
image, corresponding to a higher spatial resolution. Banton et
al. [21] showed a developmental change in infants’ ability to
discriminate motion direction. 18-weeks-old infants responded
to 17 deg of stimuli while 12-weeks-olds could only 22 deg.
Hiraki [22] found out that 5-month-olds have difficulty in
discriminating their own image with 2 second of delay from
that with no delay. This finding suggests that younger infants
might have a lower temporal resolution.

Though our hypothesis that the MNS develops simultane-
ously with visual perception is not yet verified, our key idea
of starting with maturational constraints can be applied to
other cognitive development. Newport [23] and Elman [24]
suggested that a developmental change in the capacity of
infants’ memory facilitates their language learning. Nagai et
al. [25] demonstrated that learning for joint attention can be
improved by visual development. There are even more studies
supporting the importance of maturational constraints (e.g.,
[26], [27]), which strengthen the plausibility of our model.

For future issues, our model will be extended to incorporate
development of other modalities. For example, how motor
development influences visual development and vise verse are
the most interesting question. Adding other modalities such
as tactile and auditory perceptions would alter interactions
between infants and caregivers. Different responses from care-
givers would cause changes in the developmental pathway of
the MNS, which is another important issue to be addressed.
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