
Compensated Integrated Gradients to Reliably
Interpret EEG Classification

Kazuki Tachikawa, Yuji Kawai, Jihoon Park, Minoru Asada
Graduate School of Engineering,

Osaka University
kazuki.tachikawa@ams.eng.osaka-u.ac.jp

Abstract

Integrated gradients are widely employed to evaluate the contribution of input
features in classification models because it satisfies the axioms for attribution of
prediction. This method, however, requires an appropriate baseline for reliable
determination of the contributions. We propose a compensated integrated gradients
method that does not require a baseline. In fact, the method compensates the
attributions calculated by integrated gradients at an arbitrary baseline using Shapley
sampling. We prove that the method retrieves reliable attributions if the processes
of input features in a classifier are mutually independent, and they are identical like
shared weights in convolutional neural networks. Using three electroencephalo-
gram datasets, we experimentally demonstrate that the attributions of the proposed
method are more reliable than those of the original integrated gradients, and its
computational complexity is much lower than that of Shapley sampling.

1 Introduction

Deep learning has become a promising method for image recognition, natural language processing,
speech recognition, and even classification of diseases [1, 2] and evaluation of brain and body
physiology [3, 4] from raw electroencephalogram (EEG) signals. In EEG classification, besides
the results it is important to determine the reasons of the classification for its proper interpretation
by a specialist. For instance, in medical decision support systems, interpretation enables doctors
to corroborate automatic classification based on machine learning against medical knowledge and
possibly unveil previously unnoticed features of a disease.

Several methods for visualizing the separate contribution of input features to classification have been
proposed [4–8]. Among them, integrated gradients (IG) and Shapley sampling (SS) have been shown
to be theoretically superior to other methods, because they satisfy axioms for the fair attribution of
contributions [5, 7, 9]. Although the IG method is computationally efficient, it requires an appropriate
baseline (reference point) for determining reliable contributions. The baseline is an input assumed
to not include any features and is empirically set (usually, the zero point), as no formal methods for
finding the appropriate baseline have been devised. Setting an inappropriate baseline can undermine
the reliability of the attributions [10]. In contrast, the SS method does not require setting a baseline [9],
but its computational cost is extremely high [7].

In this study, we propose a method for compensating the contributions obtained from IG at an arbitrary
baseline by using SS contributions. The proposed method satisfies the same axioms as the IG method
for an appropriate baseline under specific classifier constraints. We experimentally evaluate the
reliability and computational complexity of the proposed method on three EEG datasets.

Machine Learning for Health (ML4H) Workshop at NeurIPS 2018.



Appropriate baseline
(Unknown)

Baseline
(User-defined) Data

Shapley sampling

Integrated gradients

Difference

Preprocessing
(1 data)

Integrated gradients
Compensation

=Difference

Compensated Integrated Gradients

Target data

DataBaseline
(User-defined)

Appropriate baseline
(Unknown)

Figure 1: Diagram of the proposed method. Left panel: process to obtain the compensation amount.
Right panel: path to compute a reliable contribution.

2 Compensated IG

The proposed compensated IG method is a type of path method [5, 11] that integrates gradients of
the output with respect to the input of a classifier, usually before a softmax function in the output
layer, along an arbitrary path from the baseline to the input data point. Given path function γ(α) for
α ∈ [0, 1], classifier f , and input data x, the contribution of the i-th feature, PathIGγi (x), is given by

PathIGγi (x) =

∫ 1

α=0

∂f(γ(α))

∂γi(α)

∂γi(α)

∂α
dα.

This method satisfies the following four axioms [5, 11]:

1. Implementation invariance: If two classifiers are functionally equivalent, i.e., they retrieve
equal outputs for every input, the attribution of contributions are also equivalent.

2. Dummy: If a classifier does not depend on some variables, the contribution of these variables
is always zero.

3. Linearity: Let classifier f be represented by the weighted linear sum of two sub-classifiers
f1 and f2, i.e., f = af1 + bf2 for scalars a and b. Then, the contribution of the classifier
φ(f) is also obtained by the weighted linear sum of the contribution of each sub-classifier:
φ(f) = aφ(f1) + bφ(f2).

4. Completeness: The sum of the contributions of all features equals the output value of the
classifier.

If the path is a straight line, the path method further satisfies the symmetry axiom defined below (this
method is called IG) [5].

5. Symmetry: Let the output of a classifier not always change, even if exchanging features xi
and xj , i.e., f(xi, xj) = f(xj , xi). Then, the contributions of these features are identical.

The SS method also satisfies all of these axioms, and therefore, this method corresponds to the IG
method appropriately setting the reference point (green arrow in the left panel of Fig. 1).

In most cases, a zero input is used as a baseline instead of a better input (blue arrow in the left panel
of Fig. 1). However, this zero input is often inappropriate, resulting in unreliable attribution of
prediction [10]. To compensate the contribution from the user-defined zero input, we calculate the
difference between the contribution obtained from this input and a reliable contribution obtained
using the SS method for one data record (orange dashed arrow in the left panel of Fig. 1). Note that
the computational cost of this step is not very high because the SS method is only applied to one data
record. This difference corresponds to the integral of the gradients along an unknown path from the
true baseline to the user-defined baseline. The value of the integral does not depend on the data, as it
is determined only by the two baselines. The integral value is added to the contribution obtained from
the user-defined baseline and into an arbitrary target data point to obtain the input/output gradients
integrated along the orange path in the right panel of Fig. 1.

This operation satisfies axioms 1-4, besides the symmetry axiom (5) if the classifier processes
of the input features are independent and identical, as proved in Appendix A. For example, the
identity constraint is realized by a weight sharing technique in convolutional neural networks (CNNs).
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Table 1: Spearman’s correlation compared to contributions obtained from Shapley sampling. The
temporal model corresponds to one-dimensional convolutional neural networks (CNNs), and the
spatiotemporal model to two-dimensional CNNs.

Temporal Model Spatiotemporal Model
Dataset Class C-IG SS IG Dataset Class C-IG SS IG

PhysioNet N1 0.983 0.970 0.180
N2 0.970 0.953 0.655
N3 0.988 0.988 0.925
R 0.963 0.970 0.665
W 0.987 0.972 0.326

CHB-MIT Szr. 0.996 0.994 0.817 CHB-MIT Szr. 0.806 0.983 0.695
No S. 0.993 0.990 0.293 No S. 0.917 0.982 -0.037

UCI EEG Alc. 0.994 0.991 0.260 UCI EEG Alc. 0.793 0.989 0.323
Ctr. 0.995 0.992 0.258 Ctr. 0.739 0.988 0.331

C-IG, compensated integrated gradients (proposed method); SS, Shapley sampling; IG, integrated gradients;
R, rapid eye movement; W, wakefulness; Szr., seizure; No S., no seizure; Alc., alcoholism; Ctr., control.

However, the contributions in spatial CNNs, which are widely used in image recognition, do not
satisfy the symmetry axiom because each filter processes several input features, and therefore, they
violate the independence constraint. In contrast, when using temporal CNNs, in which each filter
convolutes an input time-series feature, the contributions satisfy all the axioms. Still, an inappropriate
baseline in the original IG produces the violation of all axioms.

3 Experiments

We evaluated the reliability and computational cost of the proposed method on three publicly available
EEG datasets, namely, the PhysioNet polysomnography dataset [12–14], UCI EEG dataset [15, 16],
and CHB-MIT Scalp EEG dataset [17, 18]. For the PhysioNet polysomnography dataset, we trained
six-layer temporal CNNs to classify the data into five sleep stages (N1, N2, N3, rapid eye movement,
and wakefulness). These CNNs are one-dimensional and convolve input EEG signals separately from
each other to acquire time-domain features that are integrated in the fully connected output layer.
For both the UCI EEG and CHB-MIT Scalp EEG datasets, we trained five-layer temporal CNNs
and four-layer spatiotemporal CNNs to classify the data into two classes (alcoholism/control and
seizure/no seizure, respectively). The spatiotemporal CNNs are two-dimensional and prevent the
proposed method from satisfying the symmetry axiom.

In each dataset, we randomly selected 200 data records of each class. For each classifier, we computed
the contributions of input features using the proposed method, the IG method using the zero-input
baseline, and the SS method. We used 10 additional data records on the proposed method for
compensation to mitigate the sampling error in the SS method, although theoretically, one data record
should be enough for compensation. Ideally, contribution comparison should be performed against
true contributions, but they are unknown. Therefore, we considered the contributions obtained by the
complete SS method as the true contributions and measured the similarity among contributions by
the Spearman’s correlation [19, 20]. Large correlation coefficients (close to 1) indicate high similarity
between two compared contributions. Note that the comparison with the contributions obtained by the
SS method reflects the sampling errors. Furthermore, we determined the contributions of EEG sensors
(electrodes) to the classification of alcoholism in the UCI EEG dataset to qualitatively compare the
methods. We used a temporal model and averaged the contributions from the 200 analyzed data
records for this comparison.

4 Results

The Spearman’s correlation coefficients of all datasets and models are listed in Table 1. The coefficient
values of the proposed method, the compensated IG, were almost the same as those of SS on the
temporal CNNs. In contrast, IG exhibited the lowest values, particularly in the UCI EEG dataset.
Therefore, the proposed method can suitably compensate the unreliable contributions obtained from
the IG method.
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Figure 2: Contributions of EEG sensors (electrodes) over the scalp to classify alcoholism. The
average contribution of the methods applied to 200 data records from the UCI EEG dataset is depicted.
The red and blue areas represent positive and negative contributions to the classification of alcoholism,
respectively.

Even when the compensated IG does not satisfy the symmetry axiom on the spatiotemporal CNNs,
its coefficient values are larger than those of the original IG with its zero-input baseline. However, the
values of the compensated IG were lower than those of SS in this case, indicating that the violation of
the symmetry axiom undermines the reliability of the estimated contributions. Still, compensation
improved the reliability of the original IG.

We defined the computational complexity by the number of backpropagations (for IG) × number of
data records + number of forward propagations (for SS) × number of sensors (electrodes) × number
of data records. Assuming equal computational costs for forward and backpropagation, we obtained
computational costs of 40,000 for IG, 650,000 for the proposed method, and 12,200,000 for SS when
applied to the UCI EEG dataset. If 1000 data points are targeted, the computational cost ratio is
20:81:6100.

Fig. 2 shows the contributions of the EEG sensors (electrodes) for alcoholism classification. The
contributions obtained from the proposed method (left panel) were indistinguishable from the true
contributions obtained from the SS method (middle panel), whereas those obtained from the original
IG method (right panel) exhibit a different distribution from those obtained from the other methods.

5 Conclusion

We propose a compensated IG method using SS to improve the reliability to interpret classification
outcomes. The proposed method satisfies four axioms, namely, implementation invariance, dummy,
linearity, and completeness, besides an additional symmetry axiom under classifier constraints (see
Appendix A). Using three EEG datasets, we demonstrate that the proposed method can compute
more reliable contributions than the IG method with an inappropriate baseline and presents much
lower computational cost than the SS method. The contributions obtained from the proposed method
were very similar to those obtained from the SS method especially for temporal CNNs, which meet
the constraints for the symmetry axiom. However, the classifier constraints decrease the classification
accuracy (see Appendix B). In contrast, spatiotemporal CNNs exhibit higher classification accuracy
but lower interpretation reliability than the temporal CNNs. Therefore, classifier selection should
depend on whether reliability or classification accuracy are emphasized. Even when the symmetry
axiom is violated given the convolution among input features, we demonstrated that compensation
effectively improves the reliability of the original IG. In future developments, we will apply the
proposed method to multichannel time-series data different from EEG, e.g., acceleration of human
activities [21] and electrocardiography [22].
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Appendices

A Proof: all path methods satisfy the symmetry axiom when using temporal
CNNs

Let an input time-series be n-dimensional: x = [x1, ..., xi, ..., xn], the length of each time-series z
be L: xi = [zi1, ..., zik..., ziL], and a classifier f(x) be given by

f(x) =

n∑
i

m∑
j

Wijg
m(xi), (1)

where, Wij denotes a weight, gm(xi) is a nonlinear function that converts time-series input xi into
outputs m. For the CNN considered in this study, gm(xi) represents one-dimensional (temporal)
convolutional layers or filters that share weights and Wij represents the fully connected layer. The
contribution of p-th feature xp is represented as φ(f, xp).

From Eq. (1),

φ(f, xp) = φ

 n∑
i

m∑
j

Wijg
m(xi), xp

 .

Using linearity,

φ

 n∑
i

m∑
j

Wijg
m(xi), xp

 = φ

 m∑
j

Wpjg
m(xp), xp

 .

Using the implementation invariance axiom and the symmetry assumption (let symmetric features be
xq),

Wpj =Wqj .

and

gm(xp) = gm(xq).

Therefore,

φ

 m∑
j

Wpjg
m(xp), xp

 = φ

 m∑
j

Wqjg
m(xq), xq

 .

Then,

φ(f, xp) = φ(f, xq).

Consequently, all path methods satisfy the symmetry axiom if the processes of input features are
independent and identical in a classifier.

B Classification Accuracy

Table 2: Classification accuracy of different models on three datasets.

Dataset Model Accuracy
PhysioNet Temporal 81.6%
CHB-MIT Temporal 83.4%

Spatiotemporal 88.7%
UCI EEG Temporal 69.5%

Spatiotemporal 77.1%
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